
Team Control Number: 2285 Problem: B

 Page 1 of 31

Sudoku puzzles

Abstract: Targeting the unique numerical Rubik’s cube – Sudoku, we have studied a variety of
heuristic intelligence algorithm, metrics of difficulty levels, a variety of Sudoku derivative
algorithm as well as a range of principles that are sufficient to ensure the unique solution of
Sudoku puzzles. Finally, we established a highly efficient randomized Sudoku puzzle generator.

First of all, we developed a computer backtracking algorithm of relatively high efficiency
(see 4.5) which can quickly resolve all Sudoku puzzles(including those with multiple solutions)
and developed basic metrics for mechanically assessing the difficulty degrees of Sudoku
puzzles. On the basis of that, we created a heuristic intelligence algorithm system (see section
4) with multi‐level self‐detective mechanism targeting real Sudoku puzzles that have unique
solutions. Such intelligence algorithm system can, in addition, stimulate manual
puzzle‐solving steps and record each step.

Next, we considered comprehensively the pros and cons of the long term development of
Sudoku games and defined metrics of five difficulty levels with vague boundary standards.
Within the levels we established, we have provided numerical and quantitative descriptions
for the difficulties of the puzzles in the same level.

We believe, to generate a real Sudoku puzzle, uniqueness of solution is crucial. Therefore, it
is the main and strict constraint of creating algorithm. In 5.2, we have listed the three
principles that have to be followed to ensure the uniqueness of the solution.

Another key point of our considerations is to generate Sudoku puzzles of diversity, and we
believe the diversity of the puzzles we generate bare direct influence to the market outlook
for the algorithm. Therefore, regarding the diversity of the puzzles generated, we have
provided up to 8 different transformed and derived methods (see 5.1), which will meet the
diversity requirements of Sudoku puzzles.

Based on the above studies, the algorithm we have established can generate a variety of
Sudoku puzzles with different difficulty levels subject to individual requirements of players.
Our algorithm can also be used as a Sudoku puzzle generator.

Finally, we have, through the establishment of the optimal model (see 6.2), studied the
complexity of the puzzle generating system and the changing value of the corresponding
parameter setting at different degrees of difficulty.

Keywords: Numerical Rubik’s cube, Heuristic intelligence algorithm, Derivatives,

 Backtracking algorithm, Self‐detective mechanism, Optimal model

Team Control Number: 2285 Problem: B

 Page 2 of 31

Contents
1 Introduction .. 3
2 Definitions... 3
3 Problem Analysis ... 3
4 Heuristic intelligence algorithm system... 4

4.1 Preparatory work .. 4
4.1.1 Notes.. 4
4.1.2 Data pretreatment .. 4

4.2 Type A approaches .. 5
4.2.1 Item A1.. 5
4.2.2 Item A2.. 5
4.2.3 Item A3.. 6

4.3 Type B approaches.. 7
4.3.1 Item B1.. 8
4.3.2 Item B2.. 9
4.3.3 Derivative of algorithm of Type B... 10

4.4 Type C approaches.. 10
4.4.1 Item C1.. 10
4.4.2 Item C2.. 11
4.4.3 Derivative approach of item C2 .. 12

4.5 Backtracking Algorithm [3] to solve Sudoku puzzle.. 14
4.5.1 Definitions of data structure .. 14
4.5.2 Functions ... 14
4.5.3 “Finite recusive” Pretreatment .. 15
4.5.4 Backtracking Algorithm .. 15

5 Creating a Sudoku puzzle.. 16
5.1 Derivative Rubik’s cube ... 16

5.1.1 Choosing feasible Rubik’s cube basement .. 16
5.1.2 Swapping elements in cognation rows or cognation columns....................................... 17
5.1.3 Numbers mapping ... 18
5.1.4 Rotation ... 18
5.1.5 Exchange of cognate rows and cognate columns .. 19
5.1.6 Exchange of blocks ... 20

5.2 Guarantee of Uniqueness .. 20
5.3 Developing metrics of difficulty levels .. 22

5.3.1 Weakness of general metrics ... 22
5.3.2 Fuzzy metrics .. 22
5.3.3 Difficulty coefficient of Sudoku puzzle in the same level... 23

5.4 Algorithm of creating Sudoku puzzles ... 23
6 Optimization of the complexity of creating algorithm................................... 25

6.1 Analysis... 25
6.2 Building the linear programming model ... 25

7 Strengths and weakness ... 26
8 References.. 26
9 Appendix... 27

Team Control Number: 2285 Problem: B

 Page 3 of 31

1 Introduction
Sudoku puzzle is a challenging mathematic problem and it is also a popular logic reasoning

game. The idea of the puzzle is extremely simple; the player is faced with a 9 × 9 grid divided
into nine 3 × 3 blocks. In some of these boxes, the setter puts some of the numbers 1~9
whereas other entries are left blank to form puzzles with various difficulty levels; the aim of
the solver is to complete the grid by placing in a number in every box in such a way that each
row, each column, and each block contains each of the numbers 1~9 exactly once by logic
reasoning according to the number distribution of the puzzle.

 It is not only solving Sudoku puzzle is interesting but also creating Sudoku puzzles is a
hobby of many people. Meanwhile, it is a favorite of many people to develop algorithms of
creating and solving Sudoku puzzles and make them carry out by computer.

2 Definitions
 Block(i.e.mini-square): A 3×3grid with 9 boxes.

 Row and column: There are 9 rows and 9 columns in a Sudoku puzzle.

 Degree of freedom: The amount of available number of a box.

 Fixed box: Box with number in the initial Sudoku puzzle.

 Undetermined box: Box with the degree of freedom more than one.

 Proper puzzle: Sudoku puzzle with a unique solution.

3 Problem Analysis
In this paper, the main goal is to develop an algorithm and difficulty levels metrics to

construct Sudoku puzzles of varying difficulty. The algorithm and metrics should possess the
following character:

 There are at least 4 difficulty levels and the difficulty degree with numerical and
quantitative descriptions.

 Algorithm and metrics are extensible.

 Algorithm should guarantee a unique solution.

 Complexity of the algorithm should be minimized and measurable.

 It can create Sudoku puzzles efficiently and quickly.

 Symmetric Sudoku puzzles are better although there are lots of asymmetric puzzles.

Team Control Number: 2285 Problem: B

 Page 4 of 31

4 Heuristic intelligence algorithm system
To create a Sudoku puzzle, we believe, the primary step is to know how to resolve a

Sudoku puzzle. Kinds of solving approaches are introduced in this section. We class them into
three types as A, B and C according to their own character.

4.1 Preparatory work

4.1.1 Notes

Notes Definitions

(),P x y
Position of each box; x is the row number and y is the column
number. (), 1 9x y =

(), Receive x y Keep the number filled in box (),P x y

(),Record x y Number in box (),P x y is determined or not

(, ,Possible x y k) Keep the possibility of box (),P x y ()1 9k =

Specific functions of variables:

 (), Receive x y : This variable is to keep the fixed boxes of an initial puzzle and the final

results. Blank boxes are initialized to zero particularly.

 (),Record x y : If , (), 0Receive x y ≠ (), 1x yRecord = else (), 0x y = . We can fill

in box with an assured number when

Record

(), 1x yRecord = else we cannot confirm which

number is suitable to the box.

 (), , : This variable is to record possibility of the undetermined box. The

method of records is to initialize variable as

Possible x y k

() (), , , , 1 9Possible x y k k x y k= =

During the process of computation, (), ,Possible x y k changes to -1 as a mark when we find

number is not suitable to fill in this box. k (1 9k =)

4.1.2 Data pretreatment

 Well posed puzzles should have a unique solution and the task is to find it without guessing
when men are the players. Logic reasoning all of its possible numbers placed into whichever
box is an indispensable job by the constrained rule of Sudoku. This job can be done by
computer (the function is modifyPb()). All of these possible numbers are called as hint
numbers (possible numbers).

We present Sudoku square figures with hint numbers to illustrate algorithm of solving and
creating Sudoku puzzles.

Team Control Number: 2285 Problem: B

 Page 5 of 31

4.2 Type A approaches

4.2.1 Item A1

 If the degree of freedom of a box λ is 1, the sole relevant number should be placed into
this box.

As shown in the gray box of Figure 1, 8 is the unique choice that satisfies Sudoku rule, and
thus it should be placed in shown in Figure 1. (1,5P)

 2 2
4 6 47 1
 8 8 8

5 3
8

9
 2 3 2 3 2 3 1 2 1 1
 5 5 5
 8 8

4 9 6
7 8 7 8

 3 3 3 1 3 1 3 1
4 4 4 4
 9 9 8

6
7 8 7 8 7 8

2 5
1 2 3 2 3 1 2 3 1 1 1 3 1 2
4 6 4 6 4 4 6 4 6
 9

7 5
8 8 9 8 9 8

1 2 1 2 1 1 1 1 2
4 5 4 5 4 5 4 4
 9

7

3
8 9

6
8 9 8 9 8

1 3 1 3 1 1 1 1 3 1
4 5 6 4 5 6 4 4 5 4 6 4 6
 9

8
 9

2
7 9 7 9 7

 3 1 3 1 1 3 1 3 1 1
4 5 4 5 5 6 4 6 4 6 8
 7 9 7 9 7

2
7 9 7

1 2 2 1 2 1 2 1 1 2 1
4 4 4 6 4
 7 8 9 7 8 9 7 8 7 8 9

5 3
1 2 3 1 2 1 3 1 1 1
 5

5

6 9
7 8

4
7 88 7 8 7 8

Figure 1

Algorithm details:

Step 1：Search . If the three conditions: (, ,Possible x y k)

(), 0Record x y =

 (), ,Possible x y k k= ,

 (), , 1 (1 9,)Possible x y t t t k= − = ≠

are satisfied, the next step continues，else jump to Step 3.

Step 2：Assign ijReceive k= and 1ijRecord = .

Step 3: Stop searching and exit.

4.2.2 Item A2

 If a possible number only appears once in a row, column or block, it must be the sole
suitable number that can be placed in this box.

As shown in the box of Figure 2, in column 3, number 4 appears only once in box ()9,3P .

Team Control Number: 2285 Problem: B

 Page 6 of 31

So this box can only be placed with number 4.
 2 3 2 3 1 2 3 1 2 3 3 1 3 1 3
 6 4 5 4 5 4 6 4 6 5 6 4 5 6

7
9 8

7 7
 2 3 3 2 3 1 2 3 1 2 3 3 1 3
 6 6 5 5 6 6 5 6

4
 9 8 9 9

7
9

 3 3 3 3 3
 6 4 4 4 6 6

7
5 1

7 9 7 9
8 2

1 3 1 3 3 1 2 3 2 3 1 2 3 1 3
 5 6 6 5 6 4 4 6 6 4 6

7 7 7
8 9

7
 3 2 3 1 2 3 1 2 3 2 3 1 3
 5 6 5 5 6 6 4 8

7 7
9

1 3 3 1 3 1 3 1 3
 4 4

2
 9

6 7 5
8 8

 3 3 2 3 2 3 2 3 3
 6 5 6 5 6 8

7 7 7 9 7 9
1 4

9
1 3 3 3 3 3
 6 4 4 6 69

2 5
8

7
 3 3 3 2 3 2 3 3
 5 4 5 5 5

7 7 7
1 6 8

9 9

Figure 2

Algorithm details (We take an example that a number only appears once in a column to
illustrate it):

Step 1：Search . If there is a box (, ,Possible x y k) (),P x y with conditions:

(), 0Record x y = ,

 (), ,Possible x y k k= ,

 (), 0 (1 9,)Record i m m m j= = ≠ ,

next step continues, else jump to Step 4.

Step 2：If , jump to Step 3, else jump (), , (1 9, , 1 9)Possible x y k k m m j n≠ = ≠ =

to Step 4.

Step 3：Assign ijReceive k= and 1ijRecord = .

Step 4: Stop searching and exit.

4.2.3 Item A3

If a box has two possible numbers and another box in the same row (or column, block) has
the same possible numbers, the two possible numbers can be only placed in these two boxes
respectively. We call this kind of two boxes as number couple.

As shown in Figure 3, a number couple appears in ()2,1P and ()7,1P which leads 7 and 8

can be excluded in other boxes of this column.

Team Control Number: 2285 Problem: B

 Page 7 of 31

 2 2 2
 5 5 5 59 1

7 8
3 4

7 8 8
6

 2 2 1 2 1 1 2
 5 5 5 6 5 6 5 6 5

7 8 7 8 7 8 7 9 7 8 7 8 9
3 4

7 8
1 2 1 1 2 1 2

5 5 5 5 5 6 4 3
7 7 8 7 8 7 8

9
7 8

1 3 2 3 1 2 1 1 1 2 1 2
 6 6 5 6 5 6 5 6 5 5

7 8 7 8 9 7 8 9 7 7 7 7 8 9
4

 1 1 1
 6 6 5
 8 9 8 9

2 3 4
8

7
9 8 9

 2 1 2 1 1 2
 5 5 4

7 7
8 9

7
6 3

 2 2
 5 6 5 6 5 6 5 5 6

7 8 7 8 9
4

7 9
1

7 8 9 9
3

1 3 3 1 1 1
 5 6 5 6 5 6 5 6 5 6 5

7 8 7 8 9 7 8 9 7 9 7 8
2 4

9
 1 1
 5 6 5 6 5 6 5 2
 9 9

4 3 7 8
9

Figure 3

Algorithm details (We take an example that a number couple appears in a column to
illustrate it):

Step1 ： Search . If there are two undetermined boxes and

that satisfies
(, ,Possible x y k))

)
(,P m y

(,P n y

(), ,Possible m y p p= ,

(), ,Possible n y p p= ,

(), ,Possible m y q q=

(), ,Possible n y q q=

where ,m n p q≠ ≠ (), , , 1 9m n p q = and no other possible numbers in the two boxes.,
jump to Step 2, else jump to Step 4.
Step2：Search (,)Record x y . If there is

(), 0 (1 9, ,)Record t y t t m t n= = ≠ ≠ ,

(), ,Possible t y p p=

(), ,Possible t y q q= .
jump to Step 3, else to Step 4.
Step3：Assign and (), , 1Possible t y p = − (), , 1Possible t y q = − .
Step 4: Stop searching and exit.

4.3 Type B approaches

Chain-number algorithm B1 and Connotative Chain-number algorithm B2 are this type.
Chain-number algorithm is used to exclude the same possible numbers in other chain boxes;
Connotative Chain-number algorithm is used to exclude other possible numbers in this box in

Team Control Number: 2285 Problem: B

 Page 8 of 31

order to avoid collision.

Definitions:

 Chain: It is an extension for number couple. Some possible numbers only distributes
among certain boxes in the same row (or column, block) and don’t appear in the left
boxes. These possible numbers are called chain numbers. These certain boxes (at least
three) consist of a chain. The length of chain is the amount of chain boxes i.e. the
amount of chain numbers. Another important character of a chain is that chain boxes
have no redundant possible numbers except chain numbers.

 Connotative Chain: Connotative chain has the same character with chain except two
differences. One is connotative chain boxes may have other number except chain
numbers; the other is the minimum amount of connotative chain boxes are two not
three.

4.3.1 Item B1

 At first, we introduce the easiest approach item B1of Chain-number algorithm with the
length of chain being three. In other words, the three chain numbers can be placed only in
these three chain boxes to avoid collision.

 For example, in Figure 4, chain boxes are ()8, 4P , ()8,5P and ()9,5P . Chain numbers

are 2, 6, and 8. It can be concluded that number 6 and 8 should be excluded in the left boxes.
 2 3 1 3 2 1 2 1 2
 5 6 5 5 6 5 6 5 6 5 6

7 9 7
4

9 9 9 7
8

 2 1 2 1 2
 5 6 5 6 5 6 5 6 5 6
 9 8

7 3
8 9

4

 2 1 2 1 2 1
 5 6 5 6 6 5 6 5

7 7 8 7
4

8 8
9

7
3

 5 5

7 7
3

8 9 8 9
2 1 6 4

4 6 8 3 5 1 2 9 7
3 3

5 51 2 9 6 4 7 8
 3 3 3
 6 5 5 6 5 6 5 6

4 1
8 9

7
8 9 8

2

 2 3 2 2 3 1 3 1
 6 6 6 6

7
9 5

8 8
4

7 8 7
 3 2 2 3 3
 6 6 5 6 58

7 7
1 4

7
9

Figure 4

Algorithm details (We take an example that there is a chain in a row to illustrate it; chain

length is 3)

Team Control Number: 2285 Problem: B

 Page 9 of 31

Step 1：Provided the chain numbers are and t , search,r s (), ,Possible x y k . If

(), , 1(1 9, , ,)Possible i u w w w r w s w t= − = ≠ ≠ ≠ ,

and there is at least one variable value among (), ,Possible i u r ， and (, ,Possible i u s)
)(), ,Possible i u t (1 9u = to be -1, jump to Step 2, else to Step 4.

Step 2：Search (,)Record x y . If

(), 0 (1 9, , ,)Record i k k k r k s k t= = ≠ ≠ ≠ ，

and there is at least one variable value among (), ,Possible i k r ， and (, ,Possible i k s)
)(, ,Possible i k t to be -1, jump to Step 3, else to Step 4.

Step 3：If ，make (), , (, ,)Possible i k g = g g r s t= (), , 1Possible i k g = − .

Step 4：Stop searching and exit.

4.3.2 Item B2

At first, we introduce an easy approach of Chain-number algorithm B2 which the length of
chain is two. In other words, in the same row (or column, block), some two numbers appears
in two certain boxes. Now other possible numbers in the two chain boxes can be excluded to
avoid collision.

 For example, in row 1of Figure 5 with gray shading, number 2,5,6,8 and 9 are the possible
numbers of box ; number 4, 5, 6, and 8 are the possible numbers of box . It can

be reasoned that number 6 and 8 are chain numbers, and thus 2, 5, 9 are excluded in
box , so do number 4 and 5 in box

(1,7P))

)

(1,8P

(1,7P ()1,8P .

1 2 1 2 1 1 2 2

 4 5 5 4 5 6 4 5 6 5 3 7
 9 9 8 9 8 9

1 2 1 2 3 2 2 3

4 5
9

8 6
9

7
9

2 3 3 2 3
4 5 4 4 5 5 9 8 6 7 1

 5 5 5
 8

1 4
7 8

9 2
7 8

3 6
 2 3 1 3 1 1 3 1 2
 5 5 5 7 6
 8 8 8

4 9

 2 2 3 1 3 2 1 1 2
 5 5 5 5
 8

9
 8

6 4
7 8 7 8 8 7

1 1 1
 6 6 6
 8

3 9
7 8

2 5

7
4

1 1 1 1 1 1
 6 4 4 5 6 5 6 5
 8

2
 8 7 8 9

3
7 8 9 7 9 7 9

1 14 5 7
9

6
9

3 2 8

Figure 5

Team Control Number: 2285 Problem: B

 Page 10 of 31

Algorithm details (We take an example that there is a connotative chain in a row to illustrate

it; the length of chain is 2):

Step 1：Search . If there are two undetermined boxes and (, ,Possible x y k))(,P x m (),P x n

where

(), ,Possible i m p p= ,

(), ,Possible i n p p= ,

(), ,Possible i m q q= ,

(), ,Possible i n q q= ,

,m n p q≠ ≠ .

jump to Step 3, else to Step 4.

Step 2：Search (), 0 (1 9,)Record i k k k j= = ≠ . If (), ,Possible i k p p= or

(), ,Possible i k q q= , jump to Step 3, else to Step 4.

Step 3：Make and(), , 1Possible i m t = − (), , 1(1 9, ,)Possible i n t t t p t q= − = ≠ ≠ .

Step 4：Stop searching and exit.

4.3.3 Derivative of algorithm of Type B

 We can get derivative approaches of B1 and B2 by logic analogism. Algorithms of type B
are extended.

 Derivative approach of item B1
 When there is a chain in the same row (or column, block) with four chain numbers, the
four chain numbers can be placed only in these four chain boxes to avoid repetitive.

 Derivative approach of item B2
When there is a connotative chain in the same row (or column, block) with three (or four)

chain numbers, the redundant possible numbers except chain numbers can be excluded to
avoid collision.

4.4 Type C approaches

4.4.1 Item C1

In this case, some possible numbers are in the intersection of a row (or column) and a block
but never appears in the same row again. If so, these possible numbers cannot be placed in

Team Control Number: 2285 Problem: B

 Page 11 of 31

other boxes of this block.
 As in the following example in Figure 6, number 6 in boxes () ()4, 2P , can be

excluded.

4,3P

 2 2 2
 5 5 5 59 1

7 8
3 4

7 8 8
6

 2 2 1 2 1 1 2
 5 5 5 6 5 6 5 6 5

7 8 7 8 7 8 7 9 7 8 7 8 9
3 4

7 8
1 2 1 1 2 1 2

5 5 5 5 5 6 4 3
7 7 8 7 8 8

9
7 8

1 3 2 3 1 2 1 1 1 2 1 2
 6 6 5 6 5 6 5 6 5 5

7 8 7 8 9 7 8 9 7 7 7 8 9
4

 1 1 1
 6 6 5
 8 9 8 9

2 3 4
8

9
7

8 9
 2 1 2 1 1 2
 5 5 4

7 7
8 9

7
6 3

 2 2
 5 6 5 6 5 6 5 5 6

7 8 7 8 9
4

7 9
1

7 8 9 9
3

1 3 3 1 1 1
 5 6 5 6 5 6 5 6 5 6 5

7 8 7 8 9 7 8 9 7 9 7 8
2 4

9
 1 1
 5 6 5 6 5 6 5 2
 9 9

4 3 7 8
9

Figure 6

Algorithm illustration (We take an example that there is an intersection of a row and a
block to illustrate it):

Step1：Search . As to the same row，if number is the possible number of

boxes in column
(, ,Possible x y k) k

1 2, ny y y ，and () () (1 21 / 3 1 / 3 1 / 3ny y y− = − = = −) , jump to

Step 2，else to Step 1.

Step2：Determine the intersection. If k is also in boxes which are not in the intersection, jump

to Step 3, else to Step 4.

Step3：If ，make(), ,Possible x y k k= (), , 1Possible x y k = − .

Step 4: Stop searching and exit.

4.4.2 Item C2

 If there is a communal possible number in four boxes that are intersections of two rows and
two columns, this possible number can be excluded in all the undetermined boxes left of the
two rows and columns.

 As shown in Figure 7, boxes ,()3,1P ()3,8P , ()6,1P and ()6,8P are intersections of row 3,

Team Control Number: 2285 Problem: B

 Page 12 of 31

row 6 , column 1 and column 8. Number 3 is the communal possible number. Now boxes
can exclude 3 as the possible number. ()4,1P ()4,8P ()9,1P (9,8P)

2 3 1 1 2 3 3 1 3 1 3
5 5 6 4 5 6 4 5 6 7 9 8

 3 3 1 3 3 1 3
 6 5 6 5 6 2 4

8
9

7
9

 3 3
 6 6

5 1 9 7 4 8 2
1 3 3 3 1 2 3 2 3 1 2 3 1 3
 5 6 6 5 6 4 6 4 6
 7

8 9
7

 3 2 3 1 1 2 3 2 3 1 3
 5 6 5 5 6 4 8

7 7
9

1 3 1 3

2 9 6 4 7 5 8
 3 3 3
 6 5 6 5 8

7 2 9 1 4

9 1 2 4 3 5 6 8 7
 3 2 3 2 3 3
 5

5 5

7 4 1 6 8
9 9

Figure 7

Algorithm illustration：

Step 1：Search . If possible number k appears twice respectively in column (, ,Possible x y k)

y and 'y i.e. () (), , , , ',Possible x y k k Possible x y k k= = , jump to step 2, else to step 4.

Step 2：Search the possible numbers in column y and 'y . If

()', , ,Possible x y k k=

()', ',Possible x y k k= ,

jump to step 3, else to step 4.

Step 3： If

 (), 0 (, '; , ')Record m n m x x n y y= = =

(), ,Possible m n k k= ，

make . (), , 1Possible m n k = −

Step 4: Stop searching and exit.

4.4.3 Derivative approach of item C2

This algorithm can be extended to three-order as shown in Figure 8. Now number 6 in
boxes and can be excluded. () (2,1 , 2,6P P))(2,9P

Team Control Number: 2285 Problem: B

 Page 13 of 31

 2 3 1 3 2 1 2 1 2
 5 6 5 5 6 5 6 5 6
 9

4
9 9 9

7 8

 2 1 2 1 2
 5 6 5 6 5 6 5 6 5 6
 9 8

7 3
8 9

4

 2 1 1 2 1
 5 6 5 6 5 6 5
 8

7 4

8 8
9 3

 5 5

7 7
3

8 9 8 9
2 1 6 4

4 6 8 3 5 1 2 9 7
3 3

5 51 2 9 6 4 7 8
 3 3
 6 5 5 5 6

4 1
9

7
9

8 2

 2 3 2 2 3 1 3 1
 6 6 6 6

7
9 5

8 8
4

7
 3 2 2 3 3
 6 6 5 58

7
1 4

7
9

Figure 8

Similarly, we can extend it to four-order. For example Figure 9, 4 is no longer the possible
number in boxes and by this approach. (2,5P))(2,8P

1 1 1
4 4 5 4 59 7 6 2 3 8

 1 1
4 5 4 5 4 6 4 6 4 52
 8 8 8

9 7 3

4 4
 8

3 1 7
8

5 6 2 9

 5 6 5 6 1

7 9 3 4 2 8

4 5 4 5 4 5
 8

9
 8

1 2 6 3 7

 1 1
4 6 4 6 4 6 3

2 5 7 8 9

 1 1
4 5 4 5 4 6 4 5 4 6 7
 8 8

9 2
8

3

4 5 4 56 2 3 8 1 9 7

4 5 4 5 6 4 5 4 5 6
 8

1 9 3 7
8

2

Figure 9

These algorithms above are the excellent artificial intelligence approaches[2][8] to solve
Sudoku puzzles. There are still many practical and efficient artificial intelligence methods can
improve the speed of resolving Sudoku but we don’t display them due to it’s hard to described
them with computer languages and algorithms. And the methods mentioned can resolve the
vast majority of the Sudoku puzzles already.

Team Control Number: 2285 Problem: B

 Page 14 of 31

4.5 Backtracking Algorithm [3] to solve Sudoku puzzle

It’s notable that in this section we use i (i from 1 to 81) to number the eighty-one boxes in
turn from the top to the bottom and from the left to right in order to state the Backtracking
algorithm conveniently.

4.5.1 Definitions of data structure
In this algorithm, four integer variables are used.

 ()1 81iReceive i =

We use this variable to keep the fixed boxes of an initial puzzle and the final results, and
blank boxes are initialized to zero particularly.

 ()1 81iRecord i =

iRecord is one to one correspondence with iReceive : If 0iReceive ≠ , correspondingly
1i （this suggests we can fill the box with an assured number）, else 0iRecord = Record = ,

and in this case we cannot confirm which number is suitable to the box.

 ()1 81, 1 9ijPossible i j= =

 We use this variable to keep record of possibility the entire undetermined box. The
recording method is: Initialize variable as

()1 81, 1 9ijPossible j i j= = =

During the process of computation, changes to -1 as a mark when we find number

j is not suitable to fill in this box.
ijPossible

(1 9j =)

)

 ()1 81iStack i =

Variable is used to simulate a stack with size of 81, which plays an
important role in the main backtracking process. Before backtracking, assign to with
location of all the boxes with

(1 81iStack i =

iStack
0iRecord = i.e. iStack i= .

In the backtracking process, we confirm the suitable number of these boxes. If there is no
suitable number from 1 to 9, we should backtrack to the former location and revise its
hypothetic value. Analogically, backtracking process is continued until all the boxes are filled
in the right number or we backtrack to the one before the initial box.

4.5.2 Functions

Now we introduce three important functions that will be used in section 5.3 and 5.4, and
other easier functions are not displayed.

 [] = modifyPb()

 This function is used to modify the variable ()1 81, 1 9ijPossible i j= = . When we query

Team Control Number: 2285 Problem: B

 Page 15 of 31

all the possible number that can be placed in the box of a undetermined box (0iRecord =),
the existed number now in it’s row, column and block must be excluded. We keep the query
information to realize the modification of variable . ijPossible

 [r1] = recordAll()

 This function is used to modify variable iRecord and . The return value of
function means whether the modification is implemented each time when this function is
called.Its specific function is as follows:

ijPossible

 We assign 1iRecord = and iReceive equals to the sole suitable number when the degree of
freedom iλ of undetermined box i. The return value is:

 possible number exists
1

 none box with one degree of freedom
TRUE sole

r
FALSE

⎧
= ⎨

⎩

 [r2] = Exist(i , j)

 This function is used to judge whether iReceive equals to j or not, that is to say, it can make

sure of there is number j already or not in the row, column and block that this box lies in. The
return value r2 is:

exists already
2

 else
TRUE j

r
FALSE

⎧
= ⎨

⎩

4.5.3 “Finite recusive” Pretreatment

 After calling function recordAll(), some boxes are determined resulting in the changing of
the value of . The more determined boxes, the less possible numbers of some boxes.
Then function modifyPb() is called to modifying . However, some other boxes

with the degree of freedom being one arise after modification. Now it’s time to call function
recordAll() again…… Obviously, it is more helpful when more boxes are determined. The
loop ends only in the condition that all of the boxes are determined or the return value of
function recordAll() is FALSE.

ijPossible

ijPossible

4.5.4 Backtracking Algorithm

Step 1 Scan iRecord according to the suffix in an increase order (i from 1 to 81), and then
keep record of box location in an increase order by suffix to ifiStack 0iRecord = .
Finally, integer variable max is used to count 0iRecord = and then 1 is added.

Step 2 Integer variable Top is initialized to zero; are viewed as stack; Top is
used to trace the stack top.

1Stack Stack81

Step 3 Boolean variable flag is initialized to TRUE. The following steps are running in a
unlimited loop. If Top reaches the current position by backtracking, flag is assigned to
FALSE (Step 4 continues), else flag is TRUE (Step 5 continues). The end condition is

Team Control Number: 2285 Problem: B

 Page 16 of 31

top max= i.e. final solution is available or none solution at all. At the end, 0top < .

Step 4 It means Top reaches the current position by normal hypothesis while not backtracking
due to flag being TURE. Therefore, the possible numbers of the box located by stack
top can be available according to variable and function Exist. Make ijPossible

iReceive equals to the possible number that first fall across, and let 1iRecord = .
Meanwhile, determine whether the final solution is obtained i.e. whether or
not. If ，print the solution and exit. If 1~9 are not suitable to this box, it
means the previous hypothesis is wrong and needs backtracking. So

top max=
top max=

iRecord and

iReceive are reset to zero, variable Top deducts 1 and flag is assigned to FALSE. This

loop body is over and next loop begins.

Step 5 It means Top reaches the current position by backtracking due to flag being FALSE. If
stack pops up the next box position when there is still no possible numbers can be
placed in the box located by stack top, else make iReceive equals to the possible
number that first fall across, let 1iRecord = , Top adds 1 and flag is assigned to TRUE.

This loop body is over and next loop begins.

5 Creating a Sudoku puzzle
We use “Number Coverage” method to create a Sudoku puzzle so that it is need to know

abundant Sudoku solutions first. The uniqueness and difficulty level of the Sudoku puzzles
are tested and recorded in each time of coverage.

5.1 Derivative Rubik’s cube

Definitions:

 Cognate row[2]: Row 1, 2, 3, row 4, 5, 6 and row 7, 8, 9 are cognate rows.

 Cognate column[2]: Column 1, 2, 3, column 4, 5, 6 and column 7, 8, 9 are cognate
columns.

 Sub-row and sub-column: There are 3 sub-rows and 3 sub-columns in a block. Three
elements are included in each sub-row or sub-column.

On the basis of analysis at the beginning of this section, how to create a new Sudoku puz-
zle, deriving from an intact numerical Rubik’s cube or placing numbers stochastically? The
former one is our choice because the successful probability is too tiny. The starting point is
how to get suitable Rubik’s cube to create Sudoku puzzle with our algorithm.

5.1.1 Choosing feasible Rubik’s cube basement

A well-regulated Rubik's cube (Figure 10) is not suitable —— it is not an ideal basement
for generating puzzles , because its regulation is likely to be used by players. It is believed a

Team Control Number: 2285 Problem: B

 Page 17 of 31

failure if we use this kind of basement to create a Sudoku puzzle. The better ones are Rubik's
cube with large discrete level relatively (Figure 11). In our opinion, 100 Rubik’s cube
basements are enough for a puzzle generating library to get derivative Rubik’s cubes.

1 2 3 4 5 6 7 8 9 1 4 5 6 8 7 3 2 9
4 5 6 7 8 9 1 2 3 2 7 9 3 5 4 1 8 6
7 8 9 1 2 3 4 5 6 8 3 6 2 9 1 4 5 7
2 3 4 5 6 7 8 9 1 6 5 3 4 2 8 7 9 1
5 6 7 8 9 1 2 3 4 7 9 8 1 6 5 2 3 4
8 9 1 2 3 4 5 6 7 4 2 1 9 7 3 5 6 8
3 4 5 6 7 8 9 1 2 3 1 2 8 4 9 6 7 5
6 7 8 9 1 2 3 4 5 9 6 7 5 1 2 8 4 3
9 1 2 3 4 5 6 7 8

Figure 10

5 8 4 7 3 6 9 1 2

Figure 11

We develop function FunInit1(*data) to choose a Rubik’s cube basement and its return
value is a 9×9 Rubik’s cube recorded in matrix data.

In sections from 5.1.2 to 5.1.6, eight kinds of derivative approaches of Rubik’s cube are
described.

5.1.2 Swapping elements in cognation rows or cognation columns

1 2 3 4 5 6 7 8 9

4 5 6 7 8 9 1 2 3

7 8 9 1 2 3 4 5 6

2 3 4 5 6 7 8 9 1

5 6 7 8 9 1 2 3 4

8 9 1 2 3 4 5 6 7

3 4 5 6 7 8 9 1 2

6 7 8 9 1 2 3 4 5

9 1 2 3 4 5 6 7 8

step1 step3 step2

Figure 12 Swapping steps

Firstly, we find a Rubik’s cube arbitrarily as a basement. Secondly, adjust some numbers in
the basement to obtain different Rubik’s cubes. Confined to Sudoku rules, all the adjustments
can only take place between two numbers in a cognation row (cognation column). The
principle of adjustment is:

 One-time interchanging：Take Figure 12 for example to illustrate it. Take two numbers
respectively in the same column and block (or the same row and block) and interchange

Team Control Number: 2285 Problem: B

 Page 18 of 31

them. This is done by step 1. The result of interchanging is a number appears twice in the
same row, which disobeys the rule of Sudoku; it thus needs to continue to interchange in
the collision row done by step 2 and step 3.

 Implement one-time interchanging until the whole solution satisfies Sudoku rule.

Finally, millions of Rubik’s cubes can be derived by this changing method. We develop a
function FunInit2(*data) to transmogrify cognate rows by this method. Function
FunInit3(*data) is to transmogrify cognate columns in the same way. Matrix data saves the
input and output.

5.1.3 Numbers mapping
Briefly speaking, this is one of the branches of number replacement. Now we let

（9,8,7,6,5,4,3,2,1）substitute for （1,2,3,4,5,6,7,8,9）and thus two Rubik’s cubes(Figure 13
and Figure 14) are obtained. Subsequently, two different Sudoku puzzles are generated by
covering the same places in the two Rubik’s cubes. Vice versa, we can get puzzle solutions by
this kind of number replacement.

1 2 6 3 4 5 7 8 9 9 8 7 6 5 4 3 2 1
4 5 9 6 7 8 1 2 3 6 5 4 3 2 1 9 8 7
7 8 3 9 1 2 4 5 6 3 2 1 9 8 7 6 5 4
2 3 7 4 5 6 8 9 1 8 7 6 5 4 3 2 1 9
5 6 1 7 8 9 2 3 4 5 4 3 2 1 9 8 7 6
8 9 4 1 2 3 5 6 7 2 1 9 8 7 6 5 4 3
3 4 8 5 6 7 9 1 2 7 6 5 4 3 2 1 9 8
6 7 2 8 9 1 3 4 5 4 3 2 1 9 8 7 6 5
9 1 5 2 3 4 6 7 8

Figure 13 The original Rubik's cube

1 9 8 7 6 5 4 3 2

Figure 14 Rubik's cube after mapping

Rubik’s cube in Figure 14 is derived from Figure 13. Problem arises when two numbers
don’t appear in a Sudoku puzzle, which destroys the uniqueness of solution. Because a puzzle
created on the base of this Rubik’s cube has two solutions only if we exchange the two
numbers.

The original Rubik's cube transforming to a new one is called the Rubik's cube derivative
and number mapping method is one of them.

We develop function FunInit4(*data) that can generate mapping sequences stochastically
and transform matrix data. Matrix data saves the input and output.

5.1.4 Rotation

Rotate the primary Rubik's cube with , and anticlockwise rotation
respectively to derive new independent Rubik's cube.

90o 180o 270o

This does not change the uniqueness of solution as well as the difficulty and solutions.
Solutions can be obtained by the same rotation method. Rubik's cube in Figure 16 is the result
with a counterclockwise rotation in Figure 15. 90o

Team Control Number: 2285 Problem: B

 Page 19 of 31

1 2 6 3 4 5 7 8 9
4 5 9 6 7 8 1 2 3
7 8 3 9 1 2 4 5 6
2 3 7 4 5 6 8 9 1
5 6 1 7 8 9 2 3 4
8 9 4 1 2 3 5 6 7
3 4 8 5 6 7 9 1 2
6 7 2 8 9 1 3 4 5
9 1 5 2 3 4 6 7 8

Figure 15 The original Rubik's cube

9 3 5 8
8 7

7 1 4
6 9 3
5 8 2

2 1
1 4 6 9

Figure 16 Rubik's cube after rotation

We develop function FunInit5(*data) to rotate matrix data. Rotation angles are generated
stochastically in this function. Matrix data saves the input and output.

5.1.5 Exchange of cognate rows and cognate columns
 As the definitions in 5.1, the three columns can be exchanged arbitrarily in a cognate row
or column. This does not change the uniqueness of solution as well as the difficulty and
solutions. Solutions can be obtained by the same exchange method.

 Exchanging of cognate row

1 2 3 4 5 6 7 8 9
4 5 6 7 8 9 1 2 3
7 8 9 1 2 3 4 5 6
2 3 7 4 5 6 8 9 1
5 6 1 7 8 9 2 3 4
8 9 4 1 2 3 5 6 7
3 4 5 6 7 8 9 1 2
6 7 8 9 1 2 3 4 5
9 1 2 3 4 5 6 7 8

Figure 17 The original Rubik's cube

4 5 6 7 8 9 1 2 3
1 2 3 4 5 6 7 8 9

9 1 2 3 4 5 6 7 8
6 7 8 9 1 2 3 4 5

Figure 18 Rubik's cube after exchange

 Exchanging of cognate column

1 2 3 4 5 6 7 8 9
4 5 6 7 8 9 1 2 3
7 8 9 1 2 3 4 5 6
2 3 4 5 6 7 8 9 1
5 6 7 8 9 1 2 3 4
8 9 1 2 3 4 5 6 7
3 4 5 6 7 8 9 1 2
6 7 8 9 1 2 3 4 5
9 1 2 3 4 5 6 7 8

Figure 19 The original Rubik's cube

2 1
5 4
8 7
3 2
6 5
9 8
4 3
7 6
1 9

Figure 20 Rubik's cube after exchange

 We develop function FunInit6(*data) to complete the exchange of cognate row and

Team Control Number: 2285 Problem: B

 Page 20 of 31

FunInit7(*data) to complete the exchange of cognate column. Matrix data saves the input
and output.

5.1.6 Exchange of blocks

Definitions:

 Lateral block groups: 3 blocks in the same row.

 Vertical block groups:3 blocks in the same column.

 Any two lateral block groups can be exchanged to generate a new Rubik's cube. This does
not change the uniqueness of solution as well as the difficulty and solutions; solutions can be
obtained by the same exchange method. For example, the first lateral block groups and the
second lateral block groups are exchanged in Figure 21. We don’t give examples of the
exchange of vertical block groups because both the principles are similar.

1 2 3 4 5 6 7 8 9
4 5 6 7 8 9 1 2 3
7 8 9 1 2 3 4 5 6
2 3 4 5 6 7 8 9 1
5 6 7 8 9 1 2 3 4
8 9 1 2 3 4 5 6 7
3 4 5 6 7 8 9 1 2
6 7 8 9 1 2 3 4 5
9 1 2 3 4 5 6 7 8

Figure 21 The original Rubik's cube

2 3 4 5 6 7 8 9 1
5 6 7 8 9 1 2 3 4
8 9 1 2 3 4 5 6 7
1 2 3 4 5 6 7 8 9
4 5 6 7 8 9 1 2 3
7 8 9 1 2 3 4 5 6
3 4 5 6 7 8 9 1 2
6 7 8 9 1 2 3 4 5
9 1 2 3 4 5 6 7 8

Figure 22 Rubik's cube after block
exchange

Function FunInit8(*data) is applied into complete the exchange of lateral block groups
and FunInit9(*data) to complete the exchange of vertical block groups. Matrix data saves
the input and output.

5.2 Guarantee of Uniqueness
In this paper, we only discuss the proper Sudoku. As to a proper Sudoku, its solution must

be unique.
Fixed boxes cannot be too few in order to create a proper puzzle. The more fixed boxes the

easier of this puzzle in some cases, however, it’s not absolute. It’s more suitable when the
quantity of fixed boxes in a Sudoku puzzle between 20 to 45 or more if people play it by hand.
Besides, the covered boxes are centre symmetry to meet aesthetic requirements. After
considering these factors, we develop three principles to guarantee uniqueness of solutions.
All of these principles must be satisfied when we create a Sudoku puzzle.

 Principle(1)
 It is not permitted that more than one number from 1 to 9 don’t appear in a Sudoku puzzle.
Reason about this can be referred in 5.1.3 Number mapping.

 Principle(2)

Team Control Number: 2285 Problem: B

 Page 21 of 31

Because there must be multiple solutions, it is not permitted that two or three rows in a
cognate row are blank, so does a cognate column.

 Principle(3)
Three elements analogical row couple and three elements analogical column couple of a

Rubik’s cube have six numbers in all. At least one of the six numbers cannot be covered at the
same time in the process of generating a Sudoku puzzle. We deal with two elements
analogical row couple and two elements analogical column couple in the same way.

 We illustrate these principles with some cases. In Figure 23, there is a three elements
analogical column couple and both two elements analogical couple of the Rubik’s cube. We
create a Sudoku puzzle (Figure 24) from Figure 23. This means Rubik’s cube in Figure 23 is
the solution of puzzle in Figure 24. If players don’t conform to the principles we mentioned
above in the process of resolving, it is obviously that the second solution (Figure 25) is
obtained only if we exchange both two elements analogical couple in the first cognate. The
third solution (Figure 26) is obtained if we exchange the three elements analogical column
couple. These solutions are feasible. Furthermore, there are more potential solutions.

8 1 2 9 3 6 4 7 5
5 4 9 7 2 1 8 6 3
3 7 6 4 5 8 9 2 1
6 9 5 2 1 4 3 8 7
1 2 8 5 7 3 6 9 4
4 3 7 8 6 9 1 5 2
9 5 1 3 8 7 2 4 6
2 8 3 6 4 5 7 1 9
7 6 4 1 9 2 5 3 8

Figure 23 Three elements analogical column

couple , two elements analogical couple

8 1 2 3 6 7 5
5 4 9 7 2 1 8 6 3
3 7 6 5 8 2 1
6 9 5 2 1 4 3 8 7
1 2 8 5 7 3 6 9 4

3 8 6 9 1 5 2
9 5 1 3 8 4 6
2 8 3 6 4 1 9

6 1 9 3 8

Figure 24

Analogical elements coverage

8 1 2 4 3 6 9 7 5
5 4 9 8 2 1 7 6 3
3 7 6 9 5 8 4 2 1
6 9 5 2 1 4 3 8 7
1 2 8 5 7 3 6 9 4
4 3 7 8 6 9 1 5 2
9 5 1 3 8 7 2 4 6
2 8 3 6 4 5 7 1 9
7 6 4 1 9 2 5 3 8

Figure 25 Solution 2

8 1 2 9 3 6 4 7 5
5 4 9 7 2 1 8 6 3
3 7 6 4 5 8 9 2 1
6 9 5 2 1 4 3 8 7
1 2 8 5 7 3 6 9 4
4 3 7 8 6 9 1 5 2
9 5 1 3 8 2 7 4 6
2 8 3 6 4 7 5 1 9
7 6 4 1 9 5 2 3 8

Figure 26 Solution 3

Principle (1)-(3) are true by researching the cases above. We also develop function
FunInit10(*data), FunInit11(*data) and FunInit12(*data) corresponding to the three
principles. Matrix data is the input of functions and a Boolean value is returned to indicate
whether it satisfies these principles or not.

Team Control Number: 2285 Problem: B

 Page 22 of 31

5.3 Developing metrics of difficulty levels

5.3.1 Weakness of general metrics

Well posed puzzles should have a unique solution and the task is to find it without guessing.
A kind of illusion often occurs to a beginner is that the more fixed boxes in the initial puzzle,
the harder of the puzzle. In fact, there is no definite relation between them. So it is
unadvisable to divide difficulty levels just by the amount of fixed boxes in the initial puzzle.

But there is no uniform metrics to divide difficulty levels to date. The existing metrics of
difficulty levels are 4 or 5 based on methods (such as section 4 introduced) applied into
successful solving process. In general, the more complex methods are adopted, the level is
higher i.e. the puzzle is harder.

Figure 27 Sketch map of five difficulty levels

However, 5 levels have distinct boundary and independent in general metrics, that is to say,
the player only contacts these fixed methods such as he cannot contacts methods of level 2
when he plays puzzles of level 1 .His ability is promoted slowly and it takes a lot of time
before he moves on to the higher level. This metrics is inefficient and some of boring for
players.

5.3.2 Fuzzy metrics

When we develop our own metrics of difficulty levels, some humanization factor is
considered besides the general metrics. It is more reasonable and attractable that some
methods in the higher level applied into the lower level occasionally to promote player to
have command of more complex method.

So making the level boundary be vague is necessary to extend the interest and universality
of Sudoku puzzle. Fussy process method can be set artificially. We make the quantity of
methods of Level (i+1) appearing in Level (i) be an acceptable range such as twice. But these
method crossovers are only permitted between adjacent levels.

Level 1
Level 2

Level 3
Level 4

Level 5

Figure 28 Sketch map of five difficulty levels after adjustment

Team Control Number: 2285 Problem: B

 Page 23 of 31

 Under this metrics, a Sudoku puzzle is more convenient generated by computer programs
and thus the ratio of feasible puzzle increases.

Difficulty levels:

 Level 1 (Rookie): Puzzles resolved by method of type A.

 Level 2 (Beginner): Puzzles resolved by method of type A and B.

 Level 3 (Professional): Puzzles resolved by method of type C1or C2.

 Level 4 (Expert): Puzzles resolved by method of type C1 and C2.

 Level 5 (Evil): Puzzles resolved only by method of backtracking algorithm. Uniqueness
of solutions cannot be guaranteed.

5.3.3 Difficulty coefficient of Sudoku puzzle in the same level

 In this paper, Numerical quantitative approach is used to reflect varying difficulty of
Sudoku puzzle in the same level. We set a difficulty coefficient to measure every Sudoku
puzzle.

We can see from 4.5 that the main work is searching and backtracking[1] if there are more
than one solutions of a Sudoku puzzle. We denote searching times as and backtracking
times as . Difficulty of puzzle increases when becomes larger. But difficulty of puzzle
also varies when changes. As to the same backtracking times, the more times of searching,
the more difficult of a puzzle. We take backtracking as invalid searching, and thus

a
b b

a
b a< .

There is no feasible Sudoku solution when b a= .

From analysis above, we define β as the difficulty coefficient.

a
a b

β =
−

After puzzles are created, the difficulty coefficient can be presented to players. This can
help players play well and they can choose the puzzles they want with the clear difficulty
coefficient.

5.4 Algorithm of creating Sudoku puzzles

 There are ten steps in the Algorithm of creating Sudoku puzzles as follows:

：Step0 Input the difficulty level L and the quantity of fixed boxes N and the quantity of
difficulty crossover procedures M required by players; record the current time T of
computer.

：Step1 Run FunInit1(*data)to get a basic feasible discrete Rubik’s cube.Copy data to datat;

：Step2 Derive Rubik’s cube data and run FunInit2(*data)～FunInit9(*data) stochastically.

Team Control Number: 2285 Problem: B

 Page 24 of 31

The running times of each approach are controlled by time and the derivative time is
0.1s in general.

：Step3 Cover about 15 boxes stochastically. Run FunInit10(*data)～FunInit13(*data). If
the return value is small, it suggests the degree of disperse and jump back to Step1.

：Step4 Copy data to datat. Initialize ' 0M = and ' 0m = ;

Step5：Compare the current time of computer and T. If the time cost is beyond 2s, the
program is over and requires players to input again.

Step6：Run the random generator, choose an uncovered box and change the state of this box in
datat being covered.

Step7：Run FunInit10(*data)～FunInit13(*data). If the return value is bigger than zero,
jump to Step4 .

Step8.1：According to the input, the level is L. It need to choose heuristic intelligence
approaches in level L+1.

：Step8.2 If it cannot resolve successfully, jump back to step5 because it is too hard to
generate a puzzle by cover this box.

：Step8.3 If approaches in L+1 are used, ' ' 1M M= + .
If ' 2M > , ' ' 1M M= − and jump back to Step5.

Step8.4：If approaches with difficulty level less than L, ' 'm m 1= + ; if ' 2
81 3

m
N− > , ,

and jump back to Step5.

' 'm m= −1

：Step9 Copy datat to data. If more than N of the determined boxes in data appear, jump
back to Step5.

Step10: The program is over. Output the Sudoku puzzle to user terminal.

Notes:

 'M is the times of using approaches in level L+1.

 'm is the times of using approaches with difficulty level less than L.

 About random generator: In general, we use the random generator to produce a puzzle at
each time, but we can store enough random positions of boxes from1 to 81 to improve
efficiency.

 About symmetric initial puzzle: A symmetric Sudoku puzzle is easily obtained in our
program only if we generate the random position Z from 1 to 41 and its symmetric
position is . It must be the symmetric Sudoku puzzle by covering the two
boxes .

' 81 1Z Z= − +

Team Control Number: 2285 Problem: B

 Page 25 of 31

6 Optimization of the complexity of creating algorithm

6.1 Analysis
It is clear that the main process of creating algorithm is similar to an inverse process of

solving. We believe that the more derivative times and precise of each step, the better the
puzzles can meet the requirements of plays. However, it takes more time to generate a Sudoku
puzzle, which is a contradiction to players’ requirements. An excellent algorithm is not the
fastest but considering multiple factors to make the computing load distributed reasonably to
each computing procedure. The complexity of creating algorithm contains time complexity
and space complexity. In this paper, we only have a quantitative measurement of time
complexity.

 Derivative time cost: The time complexity of kinds of derivative methods analyzed in
5.1 has no big differences. So the computing load depends on the derivative times
denoted as Y . We let T be the time cost of computer in one derivative process. The
average value of T can be monitored by programs. We believe Y T× is the Derivative
time cost.

 Difficulty limitation cost: Among the seven intelligence algorithms introduced in section
4 , the time complexity of determining difficulty is different. We define 'iT as the time
cost of the thi approach to determine the current difficulty. The average value of 'i
can be monitored by programs. Let 'iY be the time cost in one called process of the thi

approach. Which one is the more important aspect players care, metrics of difficulty of or
diversity of a puzzle? In general, the degree of recognition of these aspects varies as to
different players. We denote

T

α and β to measure the need of players. These parameters

can be controlled i.e. we can generate the more suitable Sudoku puzzles.

6.2 Building the linear programming model

Based on the analysis above, we build a linear programming model. The objective is the
maximum utility of computer algorithm and the constraint is the generating time U.

7

1
' 'i i

i
Max Y T Y Tα β

=

× × + ×∑

()

7

1

7

1

' '

10 (') 10
. . 81

' 81 1...7
0

' 0 1...7

i i
i

i L
i

i

i

i

T Y Y T U

sign Y
S T Y N

Y N i
T

T i

=

=

⎧
× + ≤⎪

⎪
⎪

× ≤⎪
⎪
⎨ > −⎪
⎪ > − =
⎪

 ≥ ⎪
⎪ ≥ =⎩

∑

∑

Team Control Number: 2285 Problem: B

 Page 26 of 31

Notes:

L: The requiring difficulty levels of players when a puzzle begins.
N: The amount of fixed boxes of an initial puzzle.
U: The acceptable generating time of players when a puzzle begins.
Sign (): Do the operation to the input number such as Sign(5)=1,Sign(0)=0.
Conclusion: A Sudoku puzzle generator is better when it can satisfy the need of players well
but not the speed of generating.

7 Strengths and weakness
 Strengths

Our algorithm can be extended into multi-order n n× Sudoku, which has a universal
significance. The backtracking algorithm can solve all the Sudoku puzzles in theory though the
time complexity varies due to difficulty of puzzles. We define metrics of difficulty according to
the intelligent approaches used in solving.

 Weaknesses

The algorithm of the game mainly concludes 7 kinds of methods. From the perspective of
perfecting the game, the number of intelligent algorithm is not enough because more intelligent
algorithms can optimize the complexity of the algorithm. The discrete degree of numbers in
initial puzzle will affect the efficiency of generating.

8 References
[1]. Sudoku Alignment website:http://www.51sudoku.com
[2]. YAN De Ren. Competitive Sudoku. China Yanshi press. 2007-Dec.
[3]. LEI Lei, SHEN Fu-ke. The Design and Implementation of the Algorithm about Sudoku.

Journal of Research and Development and Design Technology.
[4]. Richard Johnsonbaugh, Marcus Schaefer. Algorithms. Copyright 2004 PEARSON

EDUCATION ASIA LIMITED and TSINGHUA UNIVERSITY PRESS.
[5]. Duane Hanselman, Bruce Littlefield. Mastering Matlab 7. Copyright 2004 PEARSON

EDUCATION ASIA LIMITED and TSINGHUA UNIVERSITY PRESS.
[6]. Robert L.Kruse . Data Structures & Program Design in C(Second Edition). Copyright 2004

PEARSON EDUCATION ASIA LIMITED and TSINGHUA UNIVERSITY PRESS.
[7]. Meng Qing ling. Sudoku Puzzle of Artificial Solution with Computer. GanSu Science

and Technology, 2006Sep, Vol.22, NO.9
[8]. Mathe’s blog: http://blog.csdn.net/mathe/archive/2007/08/23/1755672.aspx
[9]. Gotoread.com: http://www.gotoread.com/article/bbs.aspx?id=563463
[10]. Fuji’s Website: http://www.pro.or.jp/~fuji/numplace/index.html
[11]. http://www.shes.hcc.edu.tw/~oddest/su303.htm#op1

Team Control Number: 2285 Problem: B

 Page 27 of 31

9 Appendix
9.1 Sudoku puzzles created by our algorithm

Rookie
4 8 6 5

 3 1 9

 6 7 8 5 4

 5

7 2 9 5 8 1 6

 9

1 9 4 6 5

 5 6 8

6 9 3

Beginner
 7 4
3 5 8 7

 3 5

 4 2 9
 2 4 5

7 5 1

 5 1
 9 6 7 2

 1 2

Professional
 1 3 6 5
9 7 2 3

 9 6

 4 3
 8 2 1

 5 4

4 5
6 5 9 4

 4 6 2 7

Team Control Number: 2285 Problem: B

 Page 28 of 31

Export
 4 1 2
 2 8 6

 5 9

 3 6
 6 5 1

 4 8

7 4
3 5 7

8 9 2

Evil
 9 5 6 1 3
 7 2

5 1 4 8

 5 6 2
 1

 1 2 3

1 3 7 9
6 5

8 2 5 1 6

9.2 Some of the procedures
BackTracking.m
sd=reshape(xlsread('data.xls','A1:I9')',1,81);
fix=sd~=0;
poss=zeros(81,9);
for i=1:81
 poss(i,1:9)=1:9;
end
stack=zeros(1,81);
t=1;
for i=1:81
 if fix(i)==0
 stack(t)=i;
 t=t+1;
 end
end
Max=t-1;
% small sq list
Glist= xlsread('data.xls',’s1’,'Ran');
%% preDoing
disp('preDoing time')
tic
while 1
 poss=setPb(sd,poss,fix,Glist);
 [F,sd,poss,fix]=fixAll(sd,poss,fix);

Team Control Number: 2285 Problem: B

 Page 29 of 31

 if F~=1
 break;
 end
 if sum(sd==0)==0
 break;
 end
end
toc
if sum(sd==0)==0
 return;
end
%% BackTracking
t=1;
for i=1:81
 if fix(i)==0
 stack(t)=i;
 t=t+1;
 end
end
stack=stack(1:t-1);
Max=t;
top=1;
F=1;%Normal in
tic
while 1
 if top<1
 disp('error')
 break;
 end
 if F==1
 j=1;
 while j<=9
 if poss(stack(top),j)~=-1 && beExist(sd,Glist,stack(top),j)==0
 fix(stack(top))=1;
 sd(stack(top))=j;
 top=top+1;
 if top>=Max
 toc
 disp(sd)
 return;
 end
 break;
 end
 j=j+1;
 end
 if j>9
 top=top-1;
 F=0;
 end
 else
 if sd(stack(top))==9
 fix(stack(top))=0;
 sd(stack(top))=0;
 top=top-1;
 else
 temp=sd(stack(top))+1;
 while poss(stack(top),temp)==-1 ||
beExist(sd,Glist,stack(top),temp)==1
 temp=temp+1;
 if temp > 9
 break;
 end
 end
 if temp>9
 fix(stack(top))=0;
 sd(stack(top))=0;
 top=top-1;

Team Control Number: 2285 Problem: B

 Page 30 of 31

 else
 sd(stack(top))=temp;
 top=top+1;
 F=1;
 end
 end
 end
end
toc
disp('Result....')
reshape(sd,9,9)'

ModifyPb.m
function poss=setPb(sd,poss,fix,Glist)
for i=1:81

if fix(i)==0
 %Row

 R=ceil(i/9);
 for j=R*9-8:R*9
 if sd(j)~=0
 poss(i,sd(j))=-1;
 end
 end

%Col
 if mod(i,9)==0
 C=9;
 else
 C=mod(i,9);
 end
 for j=C:9:81
 if sd(j)~=0
 poss(i,sd(j))=-1;
 nd e
 end
 %Block
 for j=1:4
 if sd(Glist(i,j))~=0
 poss(i,sd(Glist(i,j)))=-1;
 nd e
 d en
 else
 poss(i,:)=-1;
 nd e
end

Generator.m
Bas=xlsread('data.xls','A23:I31');
Bas3=zeros(9,9,30);
Bas3d=Bas3;
Ob_Num=40;
for k=1:20
% row 1 change
t=zeros(3,9);
for i=1:3:9
 t=Bas(i:i+2,:);
 n1=floor(2*rand(1,30))+1;
 n2=floor(8*rand(1,30))+1;
 n3=ones(1,length(n1));
 for j1=1:length(n1)
 if n1(j1)==1
 n3(j1)=2;
 elseif n1(j1)==2
 n3(j1)=3;
 else

Team Control Number: 2285 Problem: B

 Page 31 of 31

 n3(j1)=1;
 nd e
 end
 for j1=1:length(n1) %all
 for j2=1:length(n2)
 x1=n1(j1);
 y1=n2(j2);
 x2=n3(j1);
 while 1
 t1=t(x2,y1);
 t(x2,y1)=t(x1,y1);
 t(x1,y1)=t1;
 t2=find(t(x1,:)==t1);
 if length(t2)==1
 eak; br
 else
 if y1==t2(1)
 y1=t2(2);
 else
 y1=t2(1);
 nd e
 end
 nd e
 end
 end
 Bas(i:i+2,:)=t;
end
Bas3d(:,:,k)=Bas;
n2=floor(40*rand(1,100))+1;
Cposs=zeros(Ob_Num,81,'uint8');
i=1;
Bast=reshape(Bas',1,81);
 while i<=length(n2)
 if Idt1(n2(i))==1
 i=i+1;
 ntinue; co
 else
 Idt1(n2(i))=1;
 Idt1(81-n2(i)+1)=1;
 Cposs(ceil(sum(sum(Idt1))/2),:)=Cpc(Bast.*Idt1);
 end
 i=i+1;
 if sum(sum(Idt1))>=Ob_Num
 Bas3(:,:,k)=reshape(Bast.*Idt1,9,9)';
 reak; b
 end
 end
end

