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Sudoku puzzles 

Abstract: Targeting the unique numerical Rubik’s cube – Sudoku, we have studied a variety of 
heuristic  intelligence  algorithm, metrics  of  difficulty  levels,  a  variety  of  Sudoku  derivative 
algorithm as well as a range of principles that are sufficient to ensure the unique solution of 
Sudoku puzzles. Finally, we established a highly efficient randomized Sudoku puzzle generator. 

First of all, we developed a computer backtracking algorithm of  relatively high efficiency 
(see 4.5) which can quickly resolve all Sudoku puzzles(including those with multiple solutions) 
and  developed  basic metrics  for mechanically  assessing  the  difficulty  degrees  of  Sudoku 
puzzles. On the basis of that, we created a heuristic intelligence algorithm system (see section 
4) with multi‐level self‐detective mechanism targeting real Sudoku puzzles that have unique 
solutions.  Such  intelligence  algorithm  system  can,  in  addition,  stimulate  manual 
puzzle‐solving steps and record each step. 

Next, we considered comprehensively the pros and cons of the long term development of 
Sudoku games and defined metrics of  five difficulty  levels with vague boundary  standards. 
Within the  levels we established, we have provided numerical and quantitative descriptions 
for the difficulties of the puzzles in the same level. 

We believe, to generate a real Sudoku puzzle, uniqueness of solution is crucial. Therefore, it 
is  the main  and  strict  constraint  of  creating  algorithm.  In  5.2,  we  have  listed  the  three 
principles that have to be followed to ensure the uniqueness of the solution. 

Another key point of our considerations is to generate Sudoku puzzles of diversity, and we 
believe the diversity of the puzzles we generate bare direct  influence to the market outlook 
for  the  algorithm.  Therefore,  regarding  the  diversity  of  the  puzzles  generated,  we  have 
provided up to 8 different transformed and derived methods  (see 5.1), which will meet the 
diversity requirements of Sudoku puzzles. 

Based on the above studies, the algorithm we have established can generate a variety of 
Sudoku puzzles with different difficulty  levels  subject  to  individual  requirements of players. 
Our algorithm can also be used as a Sudoku puzzle generator. 

Finally, we have,  through  the establishment of  the optimal model  (see 6.2),  studied  the 
complexity  of  the  puzzle  generating  system  and  the  changing  value  of  the  corresponding 
parameter setting at different degrees of difficulty. 

 

Keywords: Numerical Rubik’s cube,    Heuristic intelligence algorithm, Derivatives, 

  Backtracking algorithm,    Self‐detective mechanism,    Optimal model 
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1 Introduction  
Sudoku puzzle is a challenging mathematic problem and it is also a popular logic reasoning 

game. The idea of the puzzle is extremely simple; the player is faced with a 9 × 9 grid divided 
into nine 3 × 3 blocks. In some of these boxes, the setter puts some of the numbers 1~9 
whereas other entries are left blank to form puzzles with various difficulty levels; the aim of 
the solver is to complete the grid by placing in a number in every box in such a way that each 
row, each column, and each block contains each of the numbers 1~9 exactly once by logic 
reasoning according to the number distribution of the puzzle.  

  It is not only solving Sudoku puzzle is interesting but also creating Sudoku puzzles is a 
hobby of many people. Meanwhile, it is a favorite of many people to develop algorithms of 
creating and solving Sudoku puzzles and make them carry out by computer.  

2 Definitions  
 Block(i.e.mini-square):  A 3×3grid with 9 boxes. 

 Row and column:      There are 9 rows and 9 columns in a Sudoku puzzle. 

 Degree of freedom: The amount of available number of a box. 

 Fixed box: Box with number in the initial Sudoku puzzle. 

 Undetermined box: Box with the degree of freedom more than one. 

 Proper puzzle: Sudoku puzzle with a unique solution. 

3 Problem Analysis 
In this paper, the main goal is to develop an algorithm and difficulty levels metrics to 

construct Sudoku puzzles of varying difficulty. The algorithm and metrics should possess the 
following character:  

 There are at least 4 difficulty levels and the difficulty degree with numerical and 
quantitative descriptions. 

 Algorithm and metrics are extensible. 

 Algorithm should guarantee a unique solution. 

 Complexity of the algorithm should be minimized and measurable. 

 It can create Sudoku puzzles efficiently and quickly. 

 Symmetric Sudoku puzzles are better although there are lots of asymmetric puzzles. 
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4 Heuristic intelligence algorithm system  
To create a Sudoku puzzle, we believe, the primary step is to know how to resolve a 

Sudoku puzzle. Kinds of solving approaches are introduced in this section. We class them into 
three types as A, B and C according to their own character. 

4.1 Preparatory work 

4.1.1 Notes    

Notes Definitions  

( ),P x y  
Position of each box; x is the row number and y is the column 
number.  ( ), 1 9x y =

( ),  Receive x y  Keep the number filled in box ( ),P x y  

( ),Record x y  Number in box ( ),P x y is determined or not  

( , ,Possible x y k )  Keep the possibility of box ( ),P x y ( )1 9k =  

Specific functions of variables: 

 ( ),  Receive x y : This variable is to keep the fixed boxes of an initial puzzle and the final 

results. Blank boxes are initialized to zero particularly. 

 ( ),Record x y : If , ( ), 0Receive x y ≠ ( ), 1x yRecord =  else ( ), 0x y = . We can fill 

in box with an assured number when

Record

( ), 1x yRecord =  else we cannot confirm which 

number is suitable to the box. 

 ( ), , : This variable is to record possibility of the undetermined box. The 

method of records is to initialize variable as 

Possible x y k

( ) ( ), , , , 1 9Possible x y k k x y k= =  

During the process of computation, ( ), ,Possible x y k changes to -1 as a mark when we find 

number is not suitable to fill in this box. k ( 1 9k = )

4.1.2 Data pretreatment 

  Well posed puzzles should have a unique solution and the task is to find it without guessing 
when men are the players. Logic reasoning all of its possible numbers placed into whichever 
box is an indispensable job by the constrained rule of Sudoku. This job can be done by 
computer (the function is modifyPb()). All of these possible numbers are called as hint 
numbers (possible numbers). 

We present Sudoku square figures with hint numbers to illustrate algorithm of solving and 
creating Sudoku puzzles. 

 



Team Control Number: 2285 Problem: B 

 Page 5 of 31

4.2 Type A approaches  

4.2.1 Item A1  

  If the degree of freedom of a box λ  is 1, the sole relevant number should be placed into 
this box.  

As shown in the gray box of Figure 1, 8 is the unique choice that satisfies Sudoku rule, and 
thus it should be placed in shown in Figure 1. (1,5P )

 2 2
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 8 8 8

5 3 
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 2 3  2 3  2 3 1 2 1 1  
 5   5   5  
      8 8

4 9 6 
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1 3 1  3 1 1 1 1 3 1  
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4 5  4 5 5 6 4 6 4 6 8 
   7  9 7 9 7
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7 9 7  

1 2   2  1 2 1 2 1 1 2 1
4  4   4  6 4
     7  8 9 7 8 9 7 8 7 8 9

5 3 
1 2 3 1 2 1 3 1 1 1  
 5  

 

5  
  

6 9 
7 8

4 
7 88 7 8 7 8  

Figure 1   

Algorithm details: 

Step 1：Search . If the three conditions: ( , ,Possible x y k )

( ), 0Record x y =   

  ( ), ,Possible x y k k= , 

               ( ), , 1 ( 1 9, )Possible x y t t t k= − = ≠  

are satisfied, the next step continues，else jump to Step 3. 

Step 2：Assign ijReceive k=  and 1ijRecord = . 

Step 3: Stop searching and exit.  

4.2.2 Item A2 

  If a possible number only appears once in a row, column or block, it must be the sole 
suitable number that can be placed in this box.  

As shown in the box of Figure 2, in column 3, number 4 appears only once in box ( )9,3P . 
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So this box can only be placed with number 4. 
 2 3 2 3 1 2 3 1 2 3 3 1 3 1 3 
 6 4 5 4 5 4 6 4 6 5 6 4 5 6 
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 6   6 5 5 6 6 5 6 
  

4 
  9 8 9 9

7 
9 

 3 3 3 3 3
 6 4 4 4 6 6

7  
5 1 

7 9 7 9
8 2 

1 3 1  3   3 1 2 3 2 3 1 2 3 1 3 
 5 6   6  5 6 4 4 6 6 4 6 

7  7   7  
8 9 

7  
  3 2 3 1 2 3 1 2 3 2 3 1 3 
 5 6 5 5 6 6 4 8 
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7  7   7  
1 6 8 

9 9 

Figure 2  

Algorithm details (We take an example that a number only appears once in a column to 
illustrate it): 

Step 1：Search . If there is a box ( , ,Possible x y k ) ( ),P x y with conditions: 

( ), 0Record x y =  , 

     ( ), ,Possible x y k k= , 

             ( ), 0 ( 1 9, )Record i m m m j= = ≠ , 

next step continues, else jump to Step 4. 

Step 2：If , jump to Step 3, else jump  ( ), , ( 1 9, , 1 9)Possible x y k k m m j n≠ = ≠ =

to Step 4. 

Step 3：Assign ijReceive k= and 1ijRecord = . 

Step 4: Stop searching and exit.  

4.2.3 Item A3 

If a box has two possible numbers and another box in the same row (or column, block) has 
the same possible numbers, the two possible numbers can be only placed in these two boxes 
respectively. We call this kind of two boxes as number couple.  

As shown in Figure 3, a number couple appears in ( )2,1P and ( )7,1P  which leads 7 and 8 

can be excluded in other boxes of this column. 
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 2 2 2
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1 3  2 3 1 2 1 1 1 2 1 2
    6   6 5 6 5 6 5 6 5 5

7 8  7 8 9 7 8 9 7 7 7 7 8 9
4 
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  6   6  5 
 8 9  8 9

2 3 4 
8

7 
9 8 9 

 2  1 2 1 1 2  
     5 5  4 

7   7  
8 9 

7
6 3 

 
     2 2
   5 6 5 6 5 6 5 5 6

7 8  7 8 9 
4 

7 9
1 

7 8 9 9
3 

1 3   3 1  1 1  
   5 6  5 6 5 6 5 6 5 6 5  

7 8  7 8 9 7 8 9 7 9 7 8
2 4 

9 
   1  1  
 5 6  5 6 5 6 5  2 
  9   9

4 3 7 8 
9 

Figure 3  

Algorithm details (We take an example that a number couple appears in a column to 
illustrate it): 

Step1 ： Search . If there are two undetermined boxes and 

that satisfies  
( , ,Possible x y k ) )

)
( ,P m y

( ,P n y

( ), ,Possible m y p p= , 

( ), ,Possible n y p p= , 

( ), ,Possible m y q q=  

( ), ,Possible n y q q=  

where ,m n p q≠ ≠ ( ), , , 1 9m n p q = and no other possible numbers in the two boxes.,  
jump to Step 2, else jump to Step 4. 
Step2：Search ( , )Record x y . If there is  

( ), 0 ( 1 9, , )Record t y t t m t n= = ≠ ≠ , 

( ), ,Possible t y p p=  

( ), ,Possible t y q q= . 
jump to Step 3, else to Step 4. 
Step3：Assign  and ( ), , 1Possible t y p = − ( ), , 1Possible t y q = − .  
Step 4: Stop searching and exit. 

4.3 Type B approaches 

Chain-number algorithm B1 and Connotative Chain-number algorithm B2 are this type. 
Chain-number algorithm is used to exclude the same possible numbers in other chain boxes; 
Connotative Chain-number algorithm is used to exclude other possible numbers in this box in 
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order to avoid collision. 

Definitions: 

 Chain: It is an extension for number couple. Some possible numbers only distributes 
among certain boxes in the same row (or column, block) and don’t appear in the left 
boxes. These possible numbers are called chain numbers. These certain boxes (at least 
three) consist of a chain. The length of chain is the amount of chain boxes i.e. the 
amount of chain numbers. Another important character of a chain is that chain boxes 
have no redundant possible numbers except chain numbers. 

 Connotative Chain: Connotative chain has the same character with chain except two 
differences. One is connotative chain boxes may have other number except chain 
numbers; the other is the minimum amount of connotative chain boxes are two not 
three. 

4.3.1 Item B1  

  At first, we introduce the easiest approach item B1of Chain-number algorithm with the 
length of chain being three. In other words, the three chain numbers can be placed only in 
these three chain boxes to avoid collision. 

  For example, in Figure 4,  chain boxes are ( )8, 4P , ( )8,5P and ( )9,5P . Chain numbers 

are 2, 6, and 8. It can be concluded that number 6 and 8 should be excluded in the left boxes. 
 2 3 1  3 2 1 2 1 2  
 5 6  5  5 6 5 6 5 6 5 6 

7 9 7   
4 

9 9 9 7
8 

 
 2  1    2 1 2  
 5 6  5    6 5 6 5 6 5 6 
 9  8    

7 3 
8 9

4 
 

 2  1    2 1 2 1
 5 6  5    6 6 5 6 5

7  7 8  7  
4 

8 8
9 

7
3 

     
 5   5  

7  7   
3 

8 9 8 9
2 1 6 4 

4 6 8 3 5 1 2 9 7 
3 3

5 51 2 9 6 4 7 8 
 3 3 3  
 6 5 5 6 5 6 5 6 
  

4 1 
8 9

7 
8 9 8

2 
 

 2 3 2 2 3 1 3 1  
 6 6 6 6 

7  
9 5 

 

8 8
4 

7 8 7  
  3  2 2 3 3
     6 6 5 6 58 

7   7  
1 4 

7
9 

Figure 4  

Algorithm details (We take an example that there is a chain in a row to illustrate it; chain  

length is 3) 
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Step 1：Provided the chain numbers are and t , search,r s ( ), ,Possible x y k . If  

( ), , 1( 1 9, , , )Possible i u w w w r w s w t= − = ≠ ≠ ≠ , 

and there is at least one variable value among ( ), ,Possible i u r ， and  ( , ,Possible i u s )
)( ), ,Possible i u t ( 1 9u = to be -1, jump to Step 2, else to Step 4. 

Step 2：Search ( , )Record x y . If  

( ), 0 ( 1 9, , , )Record i k k k r k s k t= = ≠ ≠ ≠ ， 

and there is at least one variable value among ( ), ,Possible i k r ， and  ( , ,Possible i k s)
)( , ,Possible i k t to be -1, jump to Step 3, else to Step 4. 

Step 3：If ，make ( ), , ( , , )Possible i k g = g g r s t= ( ), , 1Possible i k g = − .  

Step 4：Stop searching and exit. 

4.3.2 Item B2 

At first, we introduce an easy approach of Chain-number algorithm B2 which the length of 
chain is two. In other words, in the same row (or column, block), some two numbers appears 
in two certain boxes. Now other possible numbers in the two chain boxes can be excluded to 
avoid collision. 

  For example, in row 1of Figure 5 with gray shading, number 2,5,6,8 and 9 are the possible 
numbers of box ; number 4, 5, 6, and 8 are the possible numbers of box . It can 

be reasoned that number 6 and 8 are chain numbers, and thus 2, 5, 9 are excluded in 
box , so do number 4 and 5 in box

(1,7P ) )

)

(1,8P

(1,7P ( )1,8P . 

1 2 1 2 1 1 2 2  
 

 

 4 5 5 4 5 6 4 5 6 5  3 7 
  9 9 8 9 8 9 

1 2  1 2 3 2 2 3 
   
  

4 5 
9

8 6 
9

7 
9 

2 3 3 2 3 
4 5 4 4 5 5  9 8 6 7 1 

 
  
 5  5 5
 8  

1 4 
7 8

9 2 
7 8

3 6 
 2 3 1 3 1 1 3 1 2  
  5 5 5  7 6 
 8 8 8

4 9 
 

 2   2 3 1 3 2 1 1 2  
 5    5 5 5  
 8  

9 
 8 

6 4 
7 8 7 8 8 7  

1  1 1
 6 6 6
 8  

3 9 
7 8

2 5 

7
4 

1  1  1 1 1 1  
 6   4 4 5 6 5 6 5  
 8  

2 
 8 7 8 9

3 
7 8 9 7 9 7 9 

1 14 5 7 
9

6 
9

3 2 8 

Figure 5   
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Algorithm details (We take an example that there is a connotative chain in a row to illustrate  

it; the length of chain is 2): 

Step 1：Search . If there are two undetermined boxes and   ( , ,Possible x y k ) )( ,P x m ( ),P x n

where 

( ), ,Possible i m p p= , 

( ), ,Possible i n p p= , 

( ), ,Possible i m q q= , 

( ), ,Possible i n q q= , 

,m n p q≠ ≠ . 

jump to Step 3, else to Step 4. 

Step 2：Search ( ), 0 ( 1 9, )Record i k k k j= = ≠ . If ( ), ,Possible i k p p= or  

( ), ,Possible i k q q= , jump to Step 3, else to Step 4. 

Step 3：Make and( ), , 1Possible i m t = − ( ), , 1( 1 9, , )Possible i n t t t p t q= − = ≠ ≠ . 

Step 4：Stop searching and exit.   

4.3.3 Derivative of algorithm of Type B 

  We can get derivative approaches of B1 and B2 by logic analogism. Algorithms of type B 
are extended. 

 Derivative approach of item B1  
   When there is a chain in the same row (or column, block) with four chain numbers, the 
four chain numbers can be placed only in these four chain boxes to avoid repetitive. 

 Derivative approach of item B2 
When there is a connotative chain in the same row (or column, block) with three (or four) 

chain numbers, the redundant possible numbers except chain numbers can be excluded to 
avoid collision. 

4.4 Type C approaches 

4.4.1 Item C1                                                                         

In this case, some possible numbers are in the intersection of a row (or column) and a block 
but never appears in the same row again. If so, these possible numbers cannot be placed in 
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other boxes of this block.  
  As in the following example in Figure  6, number 6 in boxes ( ) ( )4, 2P , can be 

excluded. 

4,3P

 2 2 2
 5 5 5 59 1 

7 8 
3 4 

7 8 8
6 

   2   2 1 2 1 1 2  
   5   5 5 6 5 6 5 6 5  

7 8  7 8  7 8 7 9 7 8 7 8 9
3 4 

7 8  
1 2 1 1 2 1 2  

5 5 5 5 5  6 4 3 
7 7 8 7 8 8

9 
7 8  

1 3  2 3 1 2 1 1 1 2 1 2
    6   6 5 6 5 6 5 6 5 5

7 8  7 8 9 7 8 9 7 7 7 8 9
4 

   1  1 1  
  6   6  5 
 8 9  8 9

2 3 4 
8

 

9
7 

8 9 
 2  1 2 1 1 2  
     5 5  4 

7   7  
8 9 

7
6 3 

 
     2 2
   5 6 5 6 5 6 5 5 6

7 8  7 8 9 
4 

7 9
1 

7 8 9 9
3 

1 3   3 1  1 1  
   5 6  5 6 5 6 5 6 5 6 5  

7 8  7 8 9 7 8 9 7 9 7 8
2 4 

9 
   1  1  
 5 6  5 6 5 6 5  2 
  9   9

4 3 7 8 
9 

Figure 6 

Algorithm illustration (We take an example that there is an intersection of a row and a 
block to illustrate it):  

Step1：Search . As to the same row，if number  is the possible number of 

boxes in column
( , ,Possible x y k ) k

1 2, ny y y ，and ( ) ( ) (1 21 / 3 1 / 3 1 / 3ny y y− = − = = − ) , jump to 

Step 2，else to Step 1.  

Step2：Determine the intersection. If k is also in boxes which are not in the intersection, jump 

to Step 3, else to Step 4. 

Step3：If ，make( ), ,Possible x y k k= ( ), , 1Possible x y k = − . 

Step 4: Stop searching and exit. 

4.4.2 Item C2 

 If there is a communal possible number in four boxes that are intersections of two rows and 
two columns, this possible number can be excluded in all the undetermined boxes left of the 
two rows and columns. 

  As shown in Figure 7, boxes ,( )3,1P ( )3,8P , ( )6,1P and ( )6,8P are intersections of row 3, 
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row 6 , column 1 and column 8. Number 3 is the communal possible number. Now boxes 
can exclude 3 as the possible number. ( )4,1P ( )4,8P ( )9,1P (9,8P )

2 3 1 1 2 3 3 1 3 1 3 
5 5 6 4 5 6 4 5 6 7 9 8 

 
  3 3 1 3 3 1 3 
  6 5 6 5 6 2 4 
  

8 
9

7 
9 

 3 3
 6 6
  

5 1 9 7 4 8 2 
1 3   3   3 1 2 3 2 3 1 2 3 1 3 
 5 6   6  5 6 4 6 4 6 
     7  

8 9 
7  

  3 2 3 1 1 2 3 2 3 1 3 
 5 6 5 5 6 4 8 

7  7
9 

 
1 3 1 3
  
  

2 9 6 4 7 5 8 
  3   3 3 
  6  5 6 5  8 
     

7 2 9 1 4 
 

9 1 2 4 3 5 6 8 7 
 3 2 3 2 3 3 
 5  

 

5 5  
  

7 4 1 6 8 
9 9 

Figure 7 

Algorithm illustration： 

Step 1：Search . If possible number k appears twice respectively in column  ( , ,Possible x y k )

y and 'y  i.e. ( ) ( ), , , , ',Possible x y k k Possible x y k k= = , jump to step 2, else to step 4. 

Step 2：Search the possible numbers in column y and 'y . If 

( )', , ,Possible x y k k=  

( )', ',Possible x y k k= , 

jump to step 3, else to step 4. 

Step 3： If  

           ( ), 0 ( , '; , ')Record m n m x x n y y= = =  

( ), ,Possible m n k k= ， 

make . ( ), , 1Possible m n k = −

Step 4: Stop searching and exit. 

4.4.3 Derivative approach of item C2 

This algorithm can be extended to three-order as shown in Figure  8. Now number 6 in 
boxes and  can be excluded. ( ) (2,1 , 2,6P P ) )(2,9P
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Figure 8 

Similarly, we can extend it to four-order. For example Figure 9, 4 is no longer the possible 
number in boxes  and  by this approach.  (2,5P ) )(2,8P

1 1 1
4 4 5 4 59 7 6 2 3 8 

     1 1
4 5  4 5 4 6 4 6 4 52 
 8   8 8

9 7 3 
  

4  4
 8  

3 1 7 
8

5 6 2 9 
    
 5 6 5 6 1 
   

7 9 3 4 2 8 
 

     
4 5  4 5 4 5  
 8  

9 
 8 

1 2 6 3 7 
 

   1 1  
4  6 4 6 4 6 3 
   

2 5 7 8 9 
 

     1 1  
4 5  4 5 4 6 4 5 4 6 7 
 8   8 

9 2 
8

3 
 

4 5 4 56 2 3 8 1 9 7 
  

4 5  4 5 6 4 5 4 5 6
 8  

1 9 3 7 
8

2 

Figure 9 

These algorithms above are the excellent artificial intelligence approaches[2][8] to solve 
Sudoku puzzles. There are still many practical and efficient artificial intelligence methods can 
improve the speed of resolving Sudoku but we don’t display them due to it’s hard to described 
them with computer languages and algorithms. And the methods mentioned can resolve the 
vast majority of the Sudoku puzzles already.  
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4.5 Backtracking Algorithm [3] to solve Sudoku puzzle  

It’s notable that in this section we use i (i from 1 to 81) to number the eighty-one boxes in 
turn from the top to the bottom and from the left to right in order to state the Backtracking 
algorithm conveniently. 

4.5.1 Definitions of data structure    
In this algorithm, four integer variables are used. 

  ( )1 81iReceive i =

We use this variable to keep the fixed boxes of an initial puzzle and the final results, and 
blank boxes are initialized to zero particularly. 

  ( )1 81iRecord i =

iRecord is one to one correspondence with iReceive : If 0iReceive ≠ , correspondingly 
1i （this suggests we can fill the box with an assured number）, else 0iRecord = Record = , 

and in this case we cannot confirm which number is suitable to the box.   

  ( )1 81, 1 9ijPossible i j= =

  We use this variable to keep record of possibility the entire undetermined box. The 
recording method is: Initialize variable as 

( )1 81, 1 9ijPossible j i j= = =  

During the process of computation, changes to -1 as a mark when we find number 

j is not suitable to fill in this box.  
ijPossible

( 1 9j = )

)

  ( )1 81iStack i =

Variable is used to simulate a stack with size of 81, which plays an 
important role in the main backtracking process. Before backtracking, assign to  with 
location of all the boxes with 

( 1 81iStack i =

iStack
0iRecord =  i.e. iStack i= .  

In the backtracking process, we confirm the suitable number of these boxes. If there is no 
suitable number from 1 to 9, we should backtrack to the former location and revise its 
hypothetic value. Analogically, backtracking process is continued until all the boxes are filled 
in the right number or we backtrack to the one before the initial box. 

4.5.2 Functions  

Now we introduce three important functions that will be used in section 5.3 and 5.4, and 
other easier functions are not displayed.  

 [ ] = modifyPb( ) 

  This function is used to modify the variable ( )1 81, 1 9ijPossible i j= = . When we query 
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all the possible number that can be placed in the box of a undetermined box ( 0iRecord = ), 
the existed number now in it’s row, column and block must be excluded. We keep the query 
information to realize the modification of variable . ijPossible

 [r1] = recordAll( ) 

  This function is used to modify variable iRecord  and . The return value of 
function means whether the modification is implemented each time when this function is 
called.Its specific function is as follows: 

ijPossible

  We assign 1iRecord = and iReceive equals to the sole suitable number when the degree of 
freedom iλ of undetermined box i. The return value is: 

 possible number exists  
1

 none box with one degree of freedom     
TRUE sole

r
FALSE

⎧
= ⎨

⎩
 

  [r2] = Exist(i , j )  

  This function is used to judge whether iReceive equals to j or not, that is to say, it can make 

sure of there is number j already or not in the row, column and block that this box lies in. The 
return value r2 is: 

exists already     
2

 else     
TRUE j

r
FALSE

⎧
= ⎨

⎩
 

4.5.3 “Finite recusive” Pretreatment 

  After calling function recordAll( ), some boxes are determined resulting in the changing of 
the value of . The more determined boxes, the less possible numbers of some boxes. 
Then function modifyPb( ) is called to modifying . However, some other boxes 

with the degree of freedom being one arise after modification. Now it’s time to call function 
recordAll( ) again…… Obviously, it is more helpful when more boxes are determined. The 
loop ends only in the condition that all of the boxes are determined or the return value of 
function recordAll( ) is FALSE. 

ijPossible

ijPossible

4.5.4 Backtracking Algorithm 

Step 1 Scan iRecord according to the suffix in an increase order (i from 1 to 81), and then 
keep record of box location in an increase order by suffix to  ifiStack 0iRecord = . 
Finally, integer variable max is used to count 0iRecord =  and then 1 is added. 

Step 2 Integer variable Top is initialized to zero; are viewed as stack; Top is 
used to trace the stack top. 

1Stack Stack81

Step 3 Boolean variable flag is initialized to TRUE. The following steps are running in a 
unlimited loop. If Top reaches the current position by backtracking, flag is assigned to 
FALSE (Step 4 continues), else flag is TRUE (Step 5 continues). The end condition is 
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top max=  i.e. final solution is available or none solution at all. At the end, 0top < . 

Step 4 It means Top reaches the current position by normal hypothesis while not backtracking 
due to flag being TURE. Therefore, the possible numbers of the box located by stack 
top can be available according to variable and function Exist. Make ijPossible

iReceive equals to the possible number that first fall across, and let 1iRecord = . 
Meanwhile, determine whether the final solution is obtained i.e. whether or 
not. If ，print the solution and exit. If 1~9 are not suitable to this box, it 
means the previous hypothesis is wrong and needs backtracking. So 

top max=
top max=

iRecord and 

iReceive  are reset to zero, variable Top deducts 1 and flag is assigned to FALSE. This 

loop body is over and next loop begins. 

Step 5 It means Top reaches the current position by backtracking due to flag being FALSE. If 
stack pops up the next box position when there is still no possible numbers can be 
placed in the box located by stack top, else make iReceive equals to the possible 
number that first fall across, let 1iRecord = , Top adds 1 and flag is assigned to TRUE. 

This loop body is over and next loop begins. 

5 Creating a Sudoku puzzle 
We use “Number Coverage” method to create a Sudoku puzzle so that it is need to know 

abundant Sudoku solutions first. The uniqueness and difficulty level of the Sudoku puzzles 
are tested and recorded in each time of coverage.  

5.1 Derivative Rubik’s cube  

Definitions: 

 Cognate row[2]: Row 1, 2, 3, row 4, 5, 6 and row 7, 8, 9 are cognate rows. 

 Cognate column[2]: Column 1, 2, 3, column 4, 5, 6 and column 7, 8, 9 are cognate 
columns.  

 Sub-row and sub-column: There are 3 sub-rows and 3 sub-columns in a block. Three 
elements are included in each sub-row or sub-column.  

On the basis of analysis at the beginning of this section, how to create a new Sudoku puz- 
zle, deriving from an intact numerical Rubik’s cube or placing numbers stochastically? The 
former one is our choice because the successful probability is too tiny. The starting point is 
how to get suitable Rubik’s cube to create Sudoku puzzle with our algorithm. 

5.1.1 Choosing feasible Rubik’s cube basement 

A well-regulated Rubik's cube (Figure 10) is not suitable —— it is not an ideal basement 
for generating puzzles , because its regulation is likely to be used by players. It is believed a 
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failure if we use this kind of basement to create a Sudoku puzzle. The better ones are Rubik's 
cube with large discrete level relatively (Figure  11). In our opinion, 100 Rubik’s cube 
basements are enough for a puzzle generating library to get derivative Rubik’s cubes. 

 

1 2 3 4 5 6 7 8 9        1 4 5 6 8 7 3 2 9  
4 5 6 7 8 9 1 2 3        2 7 9 3 5 4 1 8 6  
7 8 9 1 2 3 4 5 6        8 3 6 2 9 1 4 5 7  
2 3 4 5 6 7 8 9 1        6 5 3 4 2 8 7 9 1  
5 6 7 8 9 1 2 3 4        7 9 8 1 6 5 2 3 4  
8 9 1 2 3 4 5 6 7        4 2 1 9 7 3 5 6 8  
3 4 5 6 7 8 9 1 2        3 1 2 8 4 9 6 7 5  
6 7 8 9 1 2 3 4 5        9 6 7 5 1 2 8 4 3  
9 1 2 3 4 5 6 7 8        

Figure 10 

5 8 4 7 3 6 9 1 2  

Figure 11 

We develop function FunInit1(*data) to choose a Rubik’s cube basement and its return 
value is a 9×9 Rubik’s cube recorded in matrix data. 

In sections from 5.1.2 to 5.1.6, eight kinds of derivative approaches of Rubik’s cube are 
described.  

5.1.2 Swapping elements in cognation rows or cognation columns 

1 2 3 4 5 6 7 8 9

4 5 6 7 8 9 1 2 3

7 8 9 1 2 3 4 5 6

2 3 4 5 6 7 8 9 1

5 6 7 8 9 1 2 3 4

8 9 1 2 3 4 5 6 7

3 4 5 6 7 8 9 1 2

6 7 8 9 1 2 3 4 5

9 1 2 3 4 5 6 7 8

step1 step3 step2

 
Figure 12 Swapping steps 

Firstly, we find a Rubik’s cube arbitrarily as a basement. Secondly, adjust some numbers in 
the basement to obtain different Rubik’s cubes. Confined to Sudoku rules, all the adjustments 
can only take place between two numbers in a cognation row (cognation column). The 
principle of adjustment is: 

 One-time interchanging：Take Figure 12 for example to illustrate it. Take two numbers 
respectively in the same column and block (or the same row and block) and interchange 
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them. This is done by step 1. The result of interchanging is a number appears twice in the 
same row, which disobeys the rule of Sudoku; it thus needs to continue to interchange in 
the collision row done by step 2 and step 3.  

 Implement one-time interchanging until the whole solution satisfies Sudoku rule.  

Finally, millions of Rubik’s cubes can be derived by this changing method. We develop a 
function FunInit2(*data) to transmogrify cognate rows by this method. Function 
FunInit3(*data) is to transmogrify cognate columns in the same way. Matrix data saves the 
input and output. 

5.1.3 Numbers mapping 
Briefly speaking, this is one of the branches of number replacement. Now we let 

（9,8,7,6,5,4,3,2,1）substitute for （1,2,3,4,5,6,7,8,9）and thus two Rubik’s cubes(Figure 13 
and  Figure  14) are obtained. Subsequently, two different Sudoku puzzles are generated by 
covering the same places in the two Rubik’s cubes. Vice versa, we can get puzzle solutions by 
this kind of number replacement. 

 

1 2 6 3 4 5  7 8 9 9 8 7 6 5 4 3 2 1  
4 5 9 6 7 8  1 2 3 6 5 4 3 2 1 9 8 7  
7 8 3 9 1 2  4 5 6 3 2 1 9 8 7 6 5 4  
2 3 7 4 5 6  8 9 1 8 7 6 5 4 3 2 1 9  
5 6 1 7 8 9  2 3 4 5 4 3 2 1 9 8 7 6  
8 9 4 1 2 3  5 6 7 2 1 9 8 7 6 5 4 3  
3 4 8 5 6 7  9 1 2 7 6 5 4 3 2 1 9 8  
6 7 2 8 9 1  3 4 5 4 3 2 1 9 8 7 6 5  
9 1 5 2 3 4  6 7 8 

Figure 13 The original Rubik's cube 

1 9 8 7 6 5 4 3 2  

Figure 14 Rubik's cube after mapping 

Rubik’s cube in Figure 14 is derived from Figure 13. Problem arises when two numbers 
don’t appear in a Sudoku puzzle, which destroys the uniqueness of solution. Because a puzzle 
created on the base of this Rubik’s cube has two solutions only if we exchange the two 
numbers. 

The original Rubik's cube transforming to a new one is called the Rubik's cube derivative 
and number mapping method is one of them.  

We develop function FunInit4(*data) that can generate mapping sequences stochastically 
and transform matrix data. Matrix data saves the input and output. 

5.1.4 Rotation  

Rotate the primary Rubik's cube with , and anticlockwise rotation 
respectively to derive new independent Rubik's cube.  

90o 180o 270o

This does not change the uniqueness of solution as well as the difficulty and solutions. 
Solutions can be obtained by the same rotation method. Rubik's cube in Figure 16 is the result 
with a counterclockwise rotation in Figure 15. 90o
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1 2 6 3 4 5  7 8 9 
4 5 9 6 7 8  1 2 3 
7 8 3 9 1 2  4 5 6 
2 3 7 4 5 6  8 9 1 
5 6 1 7 8 9  2 3 4 
8 9 4 1 2 3  5 6 7 
3 4 8 5 6 7  9 1 2 
6 7 2 8 9 1  3 4 5 
9 1 5 2 3 4  6 7 8 

Figure 15 The original Rubik's cube 

9 3 5 8 
8  7 

  
7 1 4   
6 9 3   
5 8 2   

  
2  1 
1 4 6 9 

Figure 16 Rubik's cube after rotation 

We develop function FunInit5(*data) to rotate matrix data. Rotation angles are generated 
stochastically in this function. Matrix data saves the input and output. 

5.1.5 Exchange of cognate rows and cognate columns 
  As the definitions in 5.1, the three columns can be exchanged arbitrarily in a cognate row 
or column. This does not change the uniqueness of solution as well as the difficulty and 
solutions. Solutions can be obtained by the same exchange method. 

 Exchanging of cognate row 

1 2 3 4 5 6 7 8 9 
4 5 6 7 8 9 1 2 3 
7 8 9 1 2 3 4 5 6 
2 3 7 4 5 6  8 9 1 
5 6 1 7 8 9  2 3 4 
8 9 4 1 2 3  5 6 7 
3 4 5 6 7 8 9 1 2 
6 7 8 9 1 2 3 4 5 
9 1 2 3 4 5 6 7 8 

Figure 17 The original Rubik's cube 

4 5 6 7 8 9 1 2 3 
1 2 3 4 5 6 7 8 9 

  
  
  
  
  

9 1 2 3 4 5 6 7 8 
6 7 8 9 1 2 3 4 5 

Figure 18 Rubik's cube after exchange 

 Exchanging of cognate column 

1 2 3 4 5 6 7 8 9 
4 5 6 7 8 9 1 2 3 
7 8 9 1 2 3 4 5 6 
2 3 4 5 6 7 8 9 1 
5 6 7 8 9 1 2 3 4 
8 9 1 2 3 4 5 6 7 
3 4 5 6 7 8 9 1 2 
6 7 8 9 1 2 3 4 5 
9 1 2 3 4 5 6 7 8 

Figure 19 The original Rubik's cube 

2 1
5 4
8 7
3 2
6 5
9 8
4 3
7 6
1 9

Figure 20 Rubik's cube after exchange 

 We develop function FunInit6(*data) to complete the exchange of cognate row and 
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FunInit7(*data) to complete the exchange of cognate column. Matrix data saves the input 
and output. 

5.1.6 Exchange of blocks  

Definitions: 

 Lateral block groups: 3 blocks in the same row. 

 Vertical block groups:3 blocks in the same column. 

  Any two lateral block groups can be exchanged to generate a new Rubik's cube. This does 
not change the uniqueness of solution as well as the difficulty and solutions; solutions can be 
obtained by the same exchange method. For example, the first lateral block groups and the 
second lateral block groups are exchanged in Figure  21. We don’t give examples of the 
exchange of vertical block groups because both the principles are similar.  

1 2 3 4 5 6 7 8 9 
4 5 6 7 8 9 1 2 3 
7 8 9 1 2 3 4 5 6 
2 3 4 5 6 7 8 9 1 
5 6 7 8 9 1 2 3 4 
8 9 1 2 3 4 5 6 7 
3 4 5 6 7 8 9 1 2        
6 7 8 9 1 2 3 4 5        
9 1 2 3 4 5 6 7 8        

Figure 21 The original Rubik's cube 

2 3 4 5 6 7 8 9 1 
5 6 7 8 9 1 2 3 4 
8 9 1 2 3 4 5 6 7 
1 2 3 4 5 6 7 8 9 
4 5 6 7 8 9 1 2 3 
7 8 9 1 2 3 4 5 6 
3 4 5 6 7 8 9 1 2  
6 7 8 9 1 2 3 4 5  
9 1 2 3 4 5 6 7 8  

Figure 22 Rubik's cube after block 
exchange 

Function FunInit8(*data) is applied into complete the exchange of lateral block groups 
and FunInit9(*data) to complete the exchange of vertical block groups. Matrix data saves 
the input and output. 

5.2 Guarantee of Uniqueness  
In this paper, we only discuss the proper Sudoku. As to a proper Sudoku, its solution must 

be unique. 
Fixed boxes cannot be too few in order to create a proper puzzle. The more fixed boxes the 

easier of this puzzle in some cases, however, it’s not absolute. It’s more suitable when the 
quantity of fixed boxes in a Sudoku puzzle between 20 to 45 or more if people play it by hand. 
Besides, the covered boxes are centre symmetry to meet aesthetic requirements. After 
considering these factors, we develop three principles to guarantee uniqueness of solutions. 
All of these principles must be satisfied when we create a Sudoku puzzle. 

 Principle(1) 
  It is not permitted that more than one number from 1 to 9 don’t appear in a Sudoku puzzle. 
Reason about this can be referred in 5.1.3 Number mapping. 

 Principle(2) 
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Because there must be multiple solutions, it is not permitted that two or three rows in a 
cognate row are blank, so does a cognate column.  

 Principle(3) 
Three elements analogical row couple and three elements analogical column couple of a 

Rubik’s cube have six numbers in all. At least one of the six numbers cannot be covered at the 
same time in the process of generating a Sudoku puzzle. We deal with two elements 
analogical row couple and two elements analogical column couple in the same way. 

  We illustrate these principles with some cases. In Figure  23, there is a three elements 
analogical column couple and both two elements analogical couple of the Rubik’s cube. We 
create a Sudoku puzzle (Figure 24) from Figure 23. This means Rubik’s cube in Figure 23 is 
the solution of puzzle in Figure 24. If players don’t conform to the principles we mentioned 
above in the process of resolving, it is obviously that the second solution (Figure  25) is 
obtained only if we exchange both two elements analogical couple in the first cognate. The 
third solution (Figure 26) is obtained if we exchange the three elements analogical column 
couple. These solutions are feasible. Furthermore, there are more potential solutions. 

8 1 2  9 3 6   4 7 5   
5 4 9 7 2 1 8 6 3        
3 7 6  4 5 8   9 2 1   
6 9 5 2 1 4 3 8 7        
1 2 8 5 7 3 6 9 4        
4 3 7 8 6 9 1 5 2       
9 5 1 3 8   7 2 4 6   
2 8 3 6 4   5 7 1 9   
7 6 4 1 9 2 5 3 8   

Figure 23 Three elements analogical column 

couple , two elements analogical couple 

8 1 2 3 6 7 5 
5 4 9 7 2 1 8 6 3  
3 7 6 5 8 2 1 
6 9 5 2 1 4 3 8 7  
1 2 8 5 7 3 6 9 4  

3 8 6 9 1 5 2  
9 5 1 3 8 4 6 
2 8 3 6 4 1 9 

6 1 9 3 8 

Figure 24   

Analogical elements coverage 

8 1 2  4 3 6   9 7 5   
5 4 9 8 2 1 7 6 3        
3 7 6  9 5 8   4 2 1   
6 9 5 2 1 4 3 8 7        
1 2 8 5 7 3 6 9 4        
4 3 7 8 6 9 1 5 2        
9 5 1 3 8 7 2 4 6        
2 8 3 6 4 5 7 1 9        
7 6 4 1 9 2 5 3 8        

Figure 25 Solution 2 

8 1 2 9 3 6 4 7 5  
5 4 9 7 2 1 8 6 3  
3 7 6 4 5 8 9 2 1  
6 9 5 2 1 4 3 8 7  
1 2 8 5 7 3 6 9 4  
4 3 7 8 6 9 1 5 2  
9 5 1 3 8 2 7 4 6  
2 8 3 6 4 7 5 1 9  
7 6 4 1 9 5 2 3 8  

Figure 26 Solution 3 

Principle (1)-(3) are true by researching the cases above. We also develop function 
FunInit10(*data), FunInit11(*data) and FunInit12(*data) corresponding to the three 
principles. Matrix data is the input of functions and a Boolean value is returned to indicate 
whether it satisfies these principles or not.  
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5.3 Developing metrics of difficulty levels 

5.3.1 Weakness of general metrics 

Well posed puzzles should have a unique solution and the task is to find it without guessing. 
A kind of illusion often occurs to a beginner is that the more fixed boxes in the initial puzzle, 
the harder of the puzzle. In fact, there is no definite relation between them. So it is 
unadvisable to divide difficulty levels just by the amount of fixed boxes in the initial puzzle.    

But there is no uniform metrics to divide difficulty levels to date. The existing metrics of 
difficulty levels are 4 or 5 based on methods (such as section 4 introduced) applied into 
successful solving process. In general, the more complex methods are adopted, the level is 
higher i.e. the puzzle is harder.  

 
Figure 27 Sketch map of five difficulty levels 

However, 5 levels have distinct boundary and independent in general metrics, that is to say, 
the player only contacts these fixed methods such as he cannot contacts methods of level 2 
when he plays puzzles of level 1 .His ability is promoted slowly and it takes a lot of time 
before he moves on to the higher level. This metrics is inefficient and some of boring for 
players. 

5.3.2  Fuzzy metrics 

When we develop our own metrics of difficulty levels, some humanization factor is 
considered besides the general metrics. It is more reasonable and attractable that some 
methods in the higher level applied into the lower level occasionally to promote player to 
have command of more complex method.  

So making the level boundary be vague is necessary to extend the interest and universality 
of Sudoku puzzle. Fussy process method can be set artificially. We make the quantity of 
methods of Level (i+1) appearing in Level (i) be an acceptable range such as twice. But these 
method crossovers are only permitted between adjacent levels. 

Level 1
Level 2

Level 3
Level 4

Level 5  

Figure 28 Sketch map of five difficulty levels after adjustment 
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  Under this metrics, a Sudoku puzzle is more convenient generated by computer programs 
and thus the ratio of feasible puzzle increases.  

Difficulty levels: 

 Level 1 (Rookie): Puzzles resolved by method of type A. 

 Level 2 (Beginner): Puzzles resolved by method of type A and B. 

 Level 3 (Professional): Puzzles resolved by method of type C1or C2. 

 Level 4 (Expert): Puzzles resolved by method of type C1 and C2. 

 Level 5 (Evil): Puzzles resolved only by method of backtracking algorithm. Uniqueness 
of solutions cannot be guaranteed.  

5.3.3 Difficulty coefficient of Sudoku puzzle in the same level 

  In this paper, Numerical quantitative approach is used to reflect varying difficulty of 
Sudoku puzzle in the same level. We set a difficulty coefficient to measure every Sudoku 
puzzle.  

We can see from 4.5 that the main work is searching and backtracking[1] if there are more 
than one solutions of a Sudoku puzzle. We denote searching times as  and backtracking 
times as . Difficulty of puzzle increases when becomes larger. But difficulty of puzzle 
also varies when  changes. As to the same backtracking times, the more times of searching, 
the more difficult of a puzzle. We take backtracking as invalid searching, and thus 

a
b b

a
b a< . 

There is no feasible Sudoku solution when b a= . 

From analysis above, we define β  as the difficulty coefficient. 

a
a b

β =
−

 

After puzzles are created, the difficulty coefficient can be presented to players. This can 
help players play well and they can choose the puzzles they want with the clear difficulty 
coefficient.  

5.4 Algorithm of creating Sudoku puzzles  

  There are ten steps in the Algorithm of creating Sudoku puzzles as follows: 

：Step0 Input the difficulty level L and the quantity of fixed boxes N and the quantity of 
difficulty crossover procedures M required by players; record the current time T of 
computer. 

：Step1 Run FunInit1(*data)to get a basic feasible discrete Rubik’s cube.Copy data to datat; 

：Step2 Derive Rubik’s cube data and run FunInit2(*data)～FunInit9(*data) stochastically. 
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The running times of each approach are controlled by time and the derivative time is 
0.1s in general. 

：Step3 Cover about 15 boxes stochastically. Run FunInit10(*data)～FunInit13(*data). If 
the return value is small, it suggests the degree of disperse and jump back to Step1.  

：Step4 Copy data to datat. Initialize ' 0M =  and ' 0m = ;  

Step5：Compare the current time of computer and T. If the time cost is beyond 2s, the 
program is over and requires players to input again.  

Step6：Run the random generator, choose an uncovered box and change the state of this box in 
datat being covered. 

Step7：Run FunInit10(*data)～FunInit13(*data). If the return value is bigger than zero, 
jump to Step4 . 

Step8.1：According to the input, the level is L. It need to choose heuristic intelligence 
approaches in level L+1. 

：Step8.2 If it cannot resolve successfully, jump back to step5 because it is too hard to 
generate a puzzle by cover this box.  

：Step8.3 If approaches in L+1 are used, ' ' 1M M= + . 
If ' 2M > , ' ' 1M M= −  and jump back to Step5. 

Step8.4：If approaches with difficulty level less than L, ' 'm m 1= + ; if ' 2
81 3

m
N− > , , 

and jump back to Step5. 

' 'm m= −1

：Step9 Copy datat to data. If more than N of the determined boxes in data appear, jump 
back to Step5. 

Step10: The program is over. Output the Sudoku puzzle to user terminal. 

Notes: 

 'M  is the times of using approaches in level L+1. 

 'm  is the times of using approaches with difficulty level less than L. 

 About random generator: In general, we use the random generator to produce a puzzle at 
each time, but we can store enough random positions of boxes from1 to 81 to improve 
efficiency. 

 About symmetric initial puzzle: A symmetric Sudoku puzzle is easily obtained in our 
program only if we generate the random position Z from 1 to 41 and its symmetric 
position is . It must be the symmetric Sudoku puzzle by covering the two 
boxes . 

' 81 1Z Z= − +
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6 Optimization of the complexity of creating algorithm 

6.1  Analysis  
It is clear that the main process of creating algorithm is similar to an inverse process of 

solving. We believe that the more derivative times and precise of each step, the better the 
puzzles can meet the requirements of plays. However, it takes more time to generate a Sudoku 
puzzle, which is a contradiction to players’ requirements. An excellent algorithm is not the 
fastest but considering multiple factors to make the computing load distributed reasonably to 
each computing procedure. The complexity of creating algorithm contains time complexity 
and space complexity. In this paper, we only have a quantitative measurement of time 
complexity.   

 Derivative time cost: The time complexity of kinds of derivative methods analyzed in 
5.1 has no big differences. So the computing load depends on the derivative times 
denoted as Y . We let T  be the time cost of computer in one derivative process. The 
average value of T  can be monitored by programs. We believe Y T×  is the Derivative 
time cost. 

 Difficulty limitation cost: Among the seven intelligence algorithms introduced in section 
4 , the time complexity of determining difficulty is different. We define 'iT  as the time 
cost of the thi  approach to determine the current difficulty. The average value of 'i  
can be monitored by programs. Let 'iY  be the time cost in one called process of the thi  

approach. Which one is the more important aspect players care, metrics of difficulty of or 
diversity of a puzzle? In general, the degree of recognition of these aspects varies as to 
different players. We denote 

T

α and β to measure the need of players. These parameters 

can be controlled i.e. we can generate the more suitable Sudoku puzzles.  

6.2 Building the linear programming model 

Based on the analysis above, we build a linear programming model. The objective is the 
maximum utility of computer algorithm and the constraint is the generating time U. 

7

1
' 'i i

i
Max Y T Y Tα β

=

× × + ×∑  

( )

7

1

7

1

' '

10 ( ') 10
. . 81

' 81 1...7
0

' 0 1...7

i i
i

i L
i

i

i

i

T Y Y T U

sign Y
S T Y N

Y N i
T

T i

=

=

⎧
× + ≤⎪

⎪
⎪

× ≤⎪
⎪
⎨   > −⎪
⎪ > −     =
⎪

  ≥ ⎪
⎪ ≥             =⎩

∑

∑
 

 



Team Control Number: 2285 Problem: B 

 Page 26 of 31

Notes: 

L: The requiring difficulty levels of players when a puzzle begins.  
N: The amount of fixed boxes of an initial puzzle. 
U: The acceptable generating time of players when a puzzle begins. 
Sign ( ): Do the operation to the input number such as Sign(5)=1,Sign(0)=0. 
Conclusion: A Sudoku puzzle generator is better when it can satisfy the need of players well 
but not the speed of generating. 

7 Strengths and weakness 
 Strengths 

Our algorithm can be extended into multi-order n n×  Sudoku, which has a universal 
significance. The backtracking algorithm can solve all the Sudoku puzzles in theory though the 
time complexity varies due to difficulty of puzzles. We define metrics of difficulty according to 
the intelligent approaches used in solving.  

 Weaknesses 

The algorithm of the game mainly concludes 7 kinds of methods. From the perspective of 
perfecting the game, the number of intelligent algorithm is not enough because more intelligent 
algorithms can optimize the complexity of the algorithm. The discrete degree of numbers in 
initial puzzle will affect the efficiency of generating. 
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9 Appendix 
9.1 Sudoku puzzles created by our algorithm 

Rookie 
4  8     6 5

 3    1 9   

 6 7  8 5   4

 5        

7 2 9  5  8 1 6

       9  

1   9 4  6 5  

  5 6    8  

6 9     3   

Beginner 
    7  4   
3     5 8 7  

   3   5   

 4    2   9
 2   4   5  

7   5    1  

  5   1    
 9 6 7     2

  1  2     

Professional 
 1 3 6 5     
9      7 2 3

     9   6

 4  3      
 8   2   1  

     5  4  

4   5      
6 5 9      4

    4 6 2 7  
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Export 
 4   1    2
 2 8      6

     5   9

  3  6     
 6   5   1  

    4  8   

7   4      
3      5 7  

8    9   2  

Evil 
 9    5 6 1 3
    7    2

5     1  4 8

   5  6  2  
    1     

 1  2  3    

1 3  7     9
6    5     

8 2 5 1    6  

9.2 Some of the procedures 
BackTracking.m 
sd=reshape(xlsread('data.xls','A1:I9')',1,81); 
fix=sd~=0; 
poss=zeros(81,9); 
for i=1:81 
  poss(i,1:9)=1:9; 
end 
stack=zeros(1,81); 
t=1; 
for i=1:81 
    if fix(i)==0 
      stack(t)=i; 
      t=t+1; 
    end 
end 
Max=t-1; 
% small sq list 
Glist= xlsread('data.xls',’s1’,'Ran'); 
%% preDoing 
disp('preDoing time') 
tic 
while 1 
    poss=setPb(sd,poss,fix,Glist); 
    [F,sd,poss,fix]=fixAll(sd,poss,fix); 
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    if F~=1 
        break; 
    end 
    if sum(sd==0)==0 
        break; 
    end 
end 
toc 
if sum(sd==0)==0 
  return; 
end 
%% BackTracking 
t=1; 
for i=1:81 
    if fix(i)==0 
      stack(t)=i; 
      t=t+1; 
    end 
end 
stack=stack(1:t-1); 
Max=t; 
top=1; 
F=1;%Normal in 
tic 
while 1 
    if top<1 
        disp('error') 
        break; 
    end 
    if F==1 
        j=1; 
      while j<=9 
        if poss(stack(top),j)~=-1 && beExist(sd,Glist,stack(top),j)==0 
            fix(stack(top))=1; 
            sd(stack(top))=j; 
            top=top+1; 
            if top>=Max 
                toc 
                disp(sd) 
                return; 
            end 
            break; 
        end 
        j=j+1; 
      end 
      if j>9 
        top=top-1; 
        F=0;  
      end 
    else 
      if sd(stack(top))==9 
          fix(stack(top))=0; 
          sd(stack(top))=0; 
          top=top-1; 
      else 
          temp=sd(stack(top))+1; 
          while poss(stack(top),temp)==-1 || 
beExist(sd,Glist,stack(top),temp)==1  
              temp=temp+1; 
              if temp > 9 
                  break; 
              end 
          end 
          if temp>9 
            fix(stack(top))=0; 
            sd(stack(top))=0; 
            top=top-1; 
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          else 
            sd(stack(top))=temp; 
            top=top+1; 
            F=1; 
          end 
      end 
    end 
end 
toc 
disp('Result....') 
reshape(sd,9,9)' 

 
ModifyPb.m 
function poss=setPb(sd,poss,fix,Glist) 
for i=1:81 

if fix(i)==0 
    %Row 

        R=ceil(i/9); 
        for j=R*9-8:R*9 
            if sd(j)~=0 
                poss(i,sd(j))=-1; 
            end 
        end 

%Col 
        if mod(i,9)==0 
           C=9; 
        else 
           C=mod(i,9); 
        end 
        for j=C:9:81 
            if sd(j)~=0 
                poss(i,sd(j))=-1; 
           nd  e
        end 
        %Block 
        for j=1:4 
            if sd(Glist(i,j))~=0 
                poss(i,sd(Glist(i,j)))=-1; 
           nd  e
        d en
    else 
        poss(i,:)=-1; 
   nd  e
end 
 
Generator.m 
Bas=xlsread('data.xls','A23:I31'); 
Bas3=zeros(9,9,30); 
Bas3d=Bas3; 
Ob_Num=40; 
for k=1:20 
% row 1 change 
t=zeros(3,9); 
for i=1:3:9 
   t=Bas(i:i+2,:); 
   n1=floor(2*rand(1,30))+1; 
   n2=floor(8*rand(1,30))+1; 
   n3=ones(1,length(n1)); 
   for j1=1:length(n1) 
       if n1(j1)==1 
           n3(j1)=2; 
       elseif n1(j1)==2 
           n3(j1)=3; 
       else 
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           n3(j1)=1; 
      nd  e
   end 
   for j1=1:length(n1) %all 
     for j2=1:length(n2) 
         x1=n1(j1); 
         y1=n2(j2); 
         x2=n3(j1); 
         while 1 
           t1=t(x2,y1); 
           t(x2,y1)=t(x1,y1); 
           t(x1,y1)=t1; 
           t2=find(t(x1,:)==t1); 
           if length(t2)==1 
               eak; br
           else 
               if y1==t2(1) 
                   y1=t2(2); 
               else 
                   y1=t2(1); 
              nd  e
           end 
        nd  e
     end 
   end 
   Bas(i:i+2,:)=t; 
end 
Bas3d(:,:,k)=Bas; 
n2=floor(40*rand(1,100))+1; 
Cposs=zeros(Ob_Num,81,'uint8'); 
i=1; 
Bast=reshape(Bas',1,81); 
 while i<=length(n2) 
  if Idt1(n2(i))==1 
      i=i+1; 
      ntinue; co
  else 
    Idt1(n2(i))=1; 
    Idt1(81-n2(i)+1)=1; 
    Cposs(ceil(sum(sum(Idt1))/2),:)=Cpc(Bast.*Idt1); 
  end 
  i=i+1; 
  if sum(sum(Idt1))>=Ob_Num 
      Bas3(:,:,k)=reshape(Bast.*Idt1,9,9)'; 
     reak;  b
  end 
 end 
end 
 
 


